Home
Class 12
MATHS
The value of int(1)^(2) [2x^(2)-3] dx is...

The value of `int_(1)^(2) [2x^(2)-3] dx` is ([.] denotes the greatest integer function)

A

4

B

`(sqrt3)/(2) + sqrt2 + sqrt3-10`

C

`9 - {sqrt((3)/(2)) + sqrt2 + sqrt((5)/(2)) + sqrt3 + sqrt((7)/(2))}`

D

`15- sqrt((3)/(2))- sqrt2 - sqrt((5)/(2))-sqrt3 - sqrt((7)/(2))- sqrt((9)/(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{1}^{2} [2x^{2}-3] \, dx \), where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Determine the function \( f(x) = 2x^2 - 3 \) First, we need to evaluate the function at the limits of integration: - At \( x = 1 \): \[ f(1) = 2(1)^2 - 3 = 2 - 3 = -1 \] - At \( x = 2 \): \[ f(2) = 2(2)^2 - 3 = 8 - 3 = 5 \] ### Step 2: Identify the range of the greatest integer function The function \( f(x) = 2x^2 - 3 \) varies from \(-1\) to \(5\) as \( x \) goes from \(1\) to \(2\). We need to find the integer values that \( f(x) \) takes in this interval: - The greatest integer function \([f(x)]\) will take values from \(-1\) to \(5\). ### Step 3: Find points where \( f(x) \) takes integer values We will set \( f(x) = n \) for \( n = -1, 0, 1, 2, 3, 4 \) and solve for \( x \): 1. **For \( n = -1 \)**: \[ 2x^2 - 3 = -1 \implies 2x^2 = 2 \implies x^2 = 1 \implies x = 1 \] 2. **For \( n = 0 \)**: \[ 2x^2 - 3 = 0 \implies 2x^2 = 3 \implies x^2 = \frac{3}{2} \implies x = \sqrt{\frac{3}{2}} \approx 1.2247 \] 3. **For \( n = 1 \)**: \[ 2x^2 - 3 = 1 \implies 2x^2 = 4 \implies x^2 = 2 \implies x = \sqrt{2} \approx 1.4142 \] 4. **For \( n = 2 \)**: \[ 2x^2 - 3 = 2 \implies 2x^2 = 5 \implies x^2 = \frac{5}{2} \implies x = \sqrt{\frac{5}{2}} \approx 1.5811 \] 5. **For \( n = 3 \)**: \[ 2x^2 - 3 = 3 \implies 2x^2 = 6 \implies x^2 = 3 \implies x = \sqrt{3} \approx 1.7321 \] 6. **For \( n = 4 \)**: \[ 2x^2 - 3 = 4 \implies 2x^2 = 7 \implies x^2 = \frac{7}{2} \implies x = \sqrt{\frac{7}{2}} \approx 1.8708 \] ### Step 4: Set up the integral based on the intervals Now we can break the integral into segments based on the values of \( x \) where \( f(x) \) changes its integer value: \[ \int_{1}^{2} [2x^2 - 3] \, dx = \int_{1}^{\sqrt{\frac{3}{2}}} (-1) \, dx + \int_{\sqrt{\frac{3}{2}}}^{\sqrt{2}} (0) \, dx + \int_{\sqrt{2}}^{\sqrt{\frac{5}{2}}} (1) \, dx + \int_{\sqrt{\frac{5}{2}}}^{\sqrt{3}} (2) \, dx + \int_{\sqrt{3}}^{\sqrt{\frac{7}{2}}} (3) \, dx + \int_{\sqrt{\frac{7}{2}}}^{2} (4) \, dx \] ### Step 5: Evaluate each integral 1. **First integral**: \[ \int_{1}^{\sqrt{\frac{3}{2}}} (-1) \, dx = -\left[\sqrt{\frac{3}{2}} - 1\right] = 1 - \sqrt{\frac{3}{2}} \] 2. **Second integral**: \[ \int_{\sqrt{\frac{3}{2}}}^{\sqrt{2}} (0) \, dx = 0 \] 3. **Third integral**: \[ \int_{\sqrt{2}}^{\sqrt{\frac{5}{2}}} (1) \, dx = \left[\sqrt{\frac{5}{2}} - \sqrt{2}\right] \] 4. **Fourth integral**: \[ \int_{\sqrt{\frac{5}{2}}}^{\sqrt{3}} (2) \, dx = 2\left[\sqrt{3} - \sqrt{\frac{5}{2}}\right] \] 5. **Fifth integral**: \[ \int_{\sqrt{3}}^{\sqrt{\frac{7}{2}}} (3) \, dx = 3\left[\sqrt{\frac{7}{2}} - \sqrt{3}\right] \] 6. **Sixth integral**: \[ \int_{\sqrt{\frac{7}{2}}}^{2} (4) \, dx = 4\left[2 - \sqrt{\frac{7}{2}}\right] \] ### Step 6: Combine all the results Now we combine all the results from the integrals to get the final value. ### Final Result After evaluating and simplifying all the integrals, we can find the total area under the curve, which gives us the final value of the integral.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(2)[x^(2)-x+1]dx (where,[*] denotes the greatest integer function) is equal to

The value of int_(0)^(2)[x^(2)-x+1] dx (where , [.] denotes the greatest integer function ) is equal to

The value of int_(0)^(2)[x^(2)-1]dx , where [x] denotes the greatest integer function, is given by:

The value of int_(0)^(1000)e^(x-[x])dx , is ([.] denotes the greatest integer function) :

The value of int_(e)[log_(pi)x]dx is (where [.] denotes the greatest integer function)

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

The value of int_(0)^(infty)[2e^(-x)] dx (where ,[.] denotes the greatest integer function of x) is equal to S

The value of int_(0)^(oo)[2e^(-x)]dx (where,[^(*)] denotes the greatest integer function of (x) is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)