Home
Class 12
MATHS
int(0)^(3//2) [x^(2)] dx=...

`int_(0)^(3//2) [x^(2)] dx`=

A

`2+sqrt2`

B

`2- sqrt2`

C

`3//2`

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\frac{3}{2}} \lfloor x^2 \rfloor \, dx \), where \( \lfloor x^2 \rfloor \) is the greatest integer function of \( x^2 \), we will break the integral into segments based on the values of \( x^2 \). ### Step 1: Determine the range of \( x^2 \) First, we find the range of \( x^2 \) as \( x \) varies from \( 0 \) to \( \frac{3}{2} \): - At \( x = 0 \), \( x^2 = 0 \). - At \( x = \frac{3}{2} \), \( x^2 = \left(\frac{3}{2}\right)^2 = \frac{9}{4} = 2.25 \). Thus, \( 0 \leq x^2 < 2.25 \). ### Step 2: Identify the intervals for \( \lfloor x^2 \rfloor \) The function \( \lfloor x^2 \rfloor \) will take different integer values in the following intervals: - For \( 0 \leq x^2 < 1 \) (i.e., \( 0 \leq x < 1 \)), \( \lfloor x^2 \rfloor = 0 \). - For \( 1 \leq x^2 < 2 \) (i.e., \( 1 \leq x < \sqrt{2} \)), \( \lfloor x^2 \rfloor = 1 \). - For \( 2 \leq x^2 < 2.25 \) (i.e., \( \sqrt{2} \leq x < \frac{3}{2} \)), \( \lfloor x^2 \rfloor = 2 \). ### Step 3: Break the integral into parts Now we can break the integral into three parts based on the intervals identified: \[ I = \int_{0}^{1} \lfloor x^2 \rfloor \, dx + \int_{1}^{\sqrt{2}} \lfloor x^2 \rfloor \, dx + \int_{\sqrt{2}}^{\frac{3}{2}} \lfloor x^2 \rfloor \, dx \] ### Step 4: Evaluate each integral 1. **First Integral**: \[ \int_{0}^{1} \lfloor x^2 \rfloor \, dx = \int_{0}^{1} 0 \, dx = 0 \] 2. **Second Integral**: \[ \int_{1}^{\sqrt{2}} \lfloor x^2 \rfloor \, dx = \int_{1}^{\sqrt{2}} 1 \, dx = \left[ x \right]_{1}^{\sqrt{2}} = \sqrt{2} - 1 \] 3. **Third Integral**: \[ \int_{\sqrt{2}}^{\frac{3}{2}} \lfloor x^2 \rfloor \, dx = \int_{\sqrt{2}}^{\frac{3}{2}} 2 \, dx = 2 \left[ x \right]_{\sqrt{2}}^{\frac{3}{2}} = 2 \left( \frac{3}{2} - \sqrt{2} \right) = 3 - 2\sqrt{2} \] ### Step 5: Combine the results Now, we combine all parts: \[ I = 0 + (\sqrt{2} - 1) + (3 - 2\sqrt{2}) = 2 - \sqrt{2} \] Thus, the final result is: \[ I = 2 - \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(3) x^(2) dx

int_(0)^((3)/(2))x[x^(2)]dx

int_(0)^(3)2x^(2)-5dx

int_(0)^(3/2)*(2-x)dx

int_(0)^(2)3x^(2)dx is

int_(0)^(3)(x^(2)+1)dx

int_(0)^(3)(x^(2)+1)dx

int_(0)^(2)x^(3)dx

int_(0)^(3)|x^(2)-x-2|dx

int_(0)^(3)|x^(2)-x-2|dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of int(1)^(2) [2x^(2)-3] dx is ([.] denotes the greatest int...

    Text Solution

    |

  2. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  3. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  4. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  5. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  6. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  7. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  8. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  9. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  10. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  11. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  12. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  13. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  14. int(1//e)^e |log x|dx=

    Text Solution

    |

  15. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  16. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  17. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  18. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  19. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  20. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |