Home
Class 12
MATHS
int(0)^(3) [x^(3)-3x^(2) + 2x] dx=...

`int_(0)^(3) [x^(3)-3x^(2) + 2x] dx`=

A

`(9)/(4)`

B

`(7)/(4)`

C

`(3)/(4)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{3} (x^{3} - 3x^{2} + 2x) \, dx \), we will follow these steps: ### Step 1: Set up the integral We start with the integral: \[ I = \int_{0}^{3} (x^{3} - 3x^{2} + 2x) \, dx \] ### Step 2: Integrate the function We will integrate each term separately: 1. The integral of \( x^{3} \) is \( \frac{x^{4}}{4} \). 2. The integral of \( -3x^{2} \) is \( -3 \cdot \frac{x^{3}}{3} = -x^{3} \). 3. The integral of \( 2x \) is \( 2 \cdot \frac{x^{2}}{2} = x^{2} \). Putting it all together, we have: \[ I = \left[ \frac{x^{4}}{4} - x^{3} + x^{2} \right]_{0}^{3} \] ### Step 3: Evaluate the integral at the limits Now we will evaluate this expression at the upper limit \( x = 3 \) and the lower limit \( x = 0 \): \[ I = \left( \frac{3^{4}}{4} - 3^{3} + 3^{2} \right) - \left( \frac{0^{4}}{4} - 0^{3} + 0^{2} \right) \] Since the lower limit evaluates to 0, we only need to compute the upper limit: \[ I = \left( \frac{81}{4} - 27 + 9 \right) \] ### Step 4: Simplify the expression Now, we simplify the expression: \[ I = \frac{81}{4} - 27 + 9 \] Convert \( 27 \) and \( 9 \) to fractions with a common denominator of 4: \[ 27 = \frac{108}{4}, \quad 9 = \frac{36}{4} \] So, \[ I = \frac{81}{4} - \frac{108}{4} + \frac{36}{4} = \frac{81 - 108 + 36}{4} = \frac{9}{4} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{9}{4} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2)x^(3)dx

int_(0)^(3)|x^(2)-x-2|dx

int_(0)^(3)|x^(2)-x-2|dx

int_(0)^(3)(x^(2)+1)dx

int_(0)^(3)(x^(2)+1)dx

int_ (0) ^ (3) (x ^ (2) + 2x) dx

int_(0)^(3)(2x^(2)+3x+5)dx

int_(0)^(3)(1)/(x^(2)-3x+2)dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |