Home
Class 12
MATHS
The value of int(-pi//2)^(199pi//2) sqrt...

The value of `int_(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx` is

A

`50 sqrt2`

B

`100 sqrt2`

C

`150 sqrt2`

D

`200 sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{199\pi}{2}} \sqrt{1 + \cos 2x} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We know that: \[ \cos 2x = 2\cos^2 x - 1 \] Thus: \[ 1 + \cos 2x = 1 + (2\cos^2 x - 1) = 2\cos^2 x \] So, we can rewrite the integrand: \[ \sqrt{1 + \cos 2x} = \sqrt{2\cos^2 x} = \sqrt{2} |\cos x| \] ### Step 2: Break the integral into manageable parts The integral can be split into two parts: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2} |\cos x| \, dx + \int_{\frac{\pi}{2}}^{\frac{199\pi}{2}} \sqrt{2} |\cos x| \, dx \] ### Step 3: Evaluate the first integral For the first integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2} |\cos x| \, dx \] Since \( \cos x \) is non-negative in the interval \( [-\frac{\pi}{2}, \frac{\pi}{2}] \), we have: \[ |\cos x| = \cos x \] Thus: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{2} \cos x \, dx = \sqrt{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx \] The integral of \( \cos x \) is: \[ \sin x \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \sin\left(\frac{\pi}{2}\right) - \sin\left(-\frac{\pi}{2}\right) = 1 - (-1) = 2 \] So, the first integral evaluates to: \[ \sqrt{2} \cdot 2 = 2\sqrt{2} \] ### Step 4: Evaluate the second integral Next, we consider the second integral: \[ \int_{\frac{\pi}{2}}^{\frac{199\pi}{2}} \sqrt{2} |\cos x| \, dx \] The function \( \cos x \) is periodic with a period of \( 2\pi \). The integral can be simplified using the periodicity: \[ \int_{\frac{\pi}{2}}^{\frac{199\pi}{2}} |\cos x| \, dx = \sum_{k=0}^{99} \int_{\frac{\pi}{2} + 2k\pi}^{\frac{3\pi}{2} + 2k\pi} |\cos x| \, dx \] Each integral from \( \frac{\pi}{2} + 2k\pi \) to \( \frac{3\pi}{2} + 2k\pi \) evaluates to: \[ \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} |\cos x| \, dx = 2 \] Thus, for 100 periods: \[ \int_{\frac{\pi}{2}}^{\frac{199\pi}{2}} |\cos x| \, dx = 100 \cdot 2 = 200 \] So: \[ \int_{\frac{\pi}{2}}^{\frac{199\pi}{2}} \sqrt{2} |\cos x| \, dx = 200\sqrt{2} \] ### Step 5: Combine the results Now we can combine both parts: \[ I = 2\sqrt{2} + 200\sqrt{2} = 202\sqrt{2} \] ### Final Answer Thus, the value of the integral is: \[ \boxed{202\sqrt{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2) sqrt((1-cos2x)/2)dx =

int_(-pi//2)^(pi//2)sqrt(1-cos 2x)dx=

The value of the integral int_(-pi//2)^(pi//2) sqrt((1+cos^(2)x)/(2))dx is

The value of int_(- pi//2) ^(pi//2) ( cos^2 x)/( 1+3^x ) dx is

int_(0)^(pi//2) sqrt(1- cos 2x) dx

int_(0)^(pi//2) sqrt(1- cos 2x) dx

The value of the integral int _(-pi//2)^(pi//2) sqrt(cos x - cos ^(3) x ) dx is

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |