Home
Class 12
MATHS
int(0)^(n^(2)) [sqrtx] dx=...

`int_(0)^(n^(2)) [sqrtx] dx`=

A

`(n)/(6) (n+1) [4n+1]`

B

`(n)/(6) (n-1) (4n+1)`

C

`(n)/(6) (n-1) (4n-1)`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{n^2} \sqrt{x} \, dx \), we will follow these steps: ### Step 1: Identify the integral We start with the integral: \[ I = \int_{0}^{n^2} \sqrt{x} \, dx \] ### Step 2: Use the power rule for integration The integral of \( \sqrt{x} \) can be rewritten as \( x^{1/2} \). According to the power rule of integration: \[ \int x^m \, dx = \frac{x^{m+1}}{m+1} + C \quad (m \neq -1) \] For \( m = \frac{1}{2} \): \[ \int \sqrt{x} \, dx = \frac{x^{3/2}}{3/2} = \frac{2}{3} x^{3/2} \] ### Step 3: Evaluate the definite integral Now we will evaluate the definite integral from \( 0 \) to \( n^2 \): \[ I = \left[ \frac{2}{3} x^{3/2} \right]_{0}^{n^2} \] Substituting the limits: \[ I = \frac{2}{3} (n^2)^{3/2} - \frac{2}{3} (0)^{3/2} \] Calculating \( (n^2)^{3/2} \): \[ (n^2)^{3/2} = n^3 \] Thus, \[ I = \frac{2}{3} n^3 - 0 = \frac{2}{3} n^3 \] ### Final Result The value of the integral is: \[ I = \frac{2}{3} n^3 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(4)1/(1+sqrtx)dx =…..

Let I_(1)=int_(0)^(oo)(x^(2)sqrtx)/((1+x)^(6))dx,I_(2)=int_(0)^(oo)(xsqrtx)/((1+x)^(6))dx , then

int _(4) ^(9) (dx)/(sqrtx) =

Evaluate : int_(0)^(9) (sqrtx)/(sqrtx+sqrt(9-x)) dx

int ((1+sqrtx)^2)/sqrtx dx=

Let I=int_0^1 (sinx)/sqrtx dx and J=int_0^1 (cos x)/sqrtx dx . Then which of the following is true?

Evaluate int _(1) ^(2) (sqrtx)/( sqrt3 -x + sqrtx)dx

int _(2) ^(7) (sqrtx)/( sqrtx + sqrt ( 9-x)) dx =

int_(1)^(2)(dx)/(sqrtx-sqrt(x-1))

Evaluate int _(0) ^(1) (1)/( (sqrt(1 + x) + sqrtx ) dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |