Home
Class 12
MATHS
The value of int(0)^([x]) {x-[x]} dx is...

The value of `int_(0)^([x]) {x-[x]} dx` is

A

[x]

B

2[x]

C

`(1)/(2[x])`

D

`(1)/(2) [x]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{[x]} (x - [x]) \, dx \), where \([x]\) is the greatest integer function, we can follow these steps: ### Step 1: Understand the Function The expression \( x - [x] \) represents the fractional part of \( x \), denoted as \( \{x\} \). This function is periodic with a period of 1. ### Step 2: Set Up the Integral We can express the integral as: \[ \int_{0}^{[x]} (x - [x]) \, dx = \int_{0}^{[x]} \{x\} \, dx \] Since \(\{x\}\) is periodic with period 1, we can use the property of integrals over periodic functions. ### Step 3: Use the Periodicity Property The property states that: \[ \int_{0}^{n} f(x) \, dx = n \int_{0}^{1} f(x) \, dx \] for a periodic function \( f(x) \) with period 1. Here, \( n = [x] \). ### Step 4: Calculate the Integral Over One Period Now we need to compute: \[ \int_{0}^{1} \{x\} \, dx \] In the interval \( [0, 1] \), \( \{x\} = x \). Therefore: \[ \int_{0}^{1} \{x\} \, dx = \int_{0}^{1} x \, dx \] ### Step 5: Evaluate the Integral Calculating the integral: \[ \int_{0}^{1} x \, dx = \left[ \frac{x^2}{2} \right]_{0}^{1} = \frac{1^2}{2} - \frac{0^2}{2} = \frac{1}{2} \] ### Step 6: Apply the Result to the Original Integral Now, using the periodicity property: \[ \int_{0}^{[x]} (x - [x]) \, dx = [x] \int_{0}^{1} \{x\} \, dx = [x] \cdot \frac{1}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_{0}^{[x]} (x - [x]) \, dx = \frac{1}{2} [x] \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

For any real number x,the value of int_(0)^(x)[x]dx is

The value of int _(0) ^([x]){x} dx is

The value of int_([x])^(0) (-x-[x])dx , is

The value of int_(0)^(2)[x+[x+[x]]]dx is (wherel.] represent greatest integer function.3 (b) 2 (c) 0( d) 1

The value of int_(0)^(100) e^(x-[x])dx , is

The value of int_(0)^(25)e^(x-[x])dx=

The value of int_(0)^(2)|1-x|dx

The value of int_(1)^(4){x}^([x])dx

The value of int_(0)^(2)[x+[x+[x]]] dx (where, [.] denotes the greatest integer function )is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |