Home
Class 12
MATHS
int(3)^(6) 2[x] dx is equal to...

`int_(3)^(6) 2[x] dx` is equal to

A

12

B

30

C

18

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{3}^{6} 2[x] \, dx \), where \([x]\) is the greatest integer function (also known as the floor function), we will break the integral into segments based on the integer values of \(x\). ### Step 1: Identify the intervals The greatest integer function \([x]\) takes constant integer values over intervals. For \(x\) in the range from 3 to 6, we can identify the following intervals: - From \(3\) to \(4\), \([x] = 3\) - From \(4\) to \(5\), \([x] = 4\) - From \(5\) to \(6\), \([x] = 5\) ### Step 2: Break the integral We can break the integral into three parts based on the intervals identified: \[ \int_{3}^{6} 2[x] \, dx = \int_{3}^{4} 2 \cdot 3 \, dx + \int_{4}^{5} 2 \cdot 4 \, dx + \int_{5}^{6} 2 \cdot 5 \, dx \] ### Step 3: Calculate each integral Now we will calculate each integral separately. 1. **First integral**: \[ \int_{3}^{4} 2 \cdot 3 \, dx = 6 \int_{3}^{4} 1 \, dx = 6 [x]_{3}^{4} = 6(4 - 3) = 6 \cdot 1 = 6 \] 2. **Second integral**: \[ \int_{4}^{5} 2 \cdot 4 \, dx = 8 \int_{4}^{5} 1 \, dx = 8 [x]_{4}^{5} = 8(5 - 4) = 8 \cdot 1 = 8 \] 3. **Third integral**: \[ \int_{5}^{6} 2 \cdot 5 \, dx = 10 \int_{5}^{6} 1 \, dx = 10 [x]_{5}^{6} = 10(6 - 5) = 10 \cdot 1 = 10 \] ### Step 4: Sum the results Now we sum the results of the three integrals: \[ \int_{3}^{6} 2[x] \, dx = 6 + 8 + 10 = 24 \] ### Final Answer Thus, the value of the integral \( \int_{3}^{6} 2[x] \, dx \) is \( \boxed{24} \).
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-2)^(2) |[x]| dx is equal to

int_(0)^(3) [x]dx is equal to

int_(0)^(2) [x^(2)]dx is equal to

int_(0.2)^(3.5)[x]dx is equal to

The value of int_(-2)^(2)|[x]|dx is equal to

int_(-3)^(2)|x|dx is equal to

Evaluate : int_(0)^(3) |x| dx is equal :

int_(0)^(a)f(2a-x)dx=m and int_(0)^(a)f(x)dx=n then int_(0)^(2a)f(x)dx is equal to

int_(-2)^(2)|x|dx is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |