Home
Class 12
MATHS
If [.] denotes the greatest integer func...

If [.] denotes the greatest integer function, then `int_(0)^(oo) [2e^(-x)]dx=`

A

0

B

`e^(2)`

C

`2//e`

D

log 2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{0}^{\infty} [2e^{-x}] \, dx \) where \([.]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Understand the function \( y = 2e^{-x} \) The function \( y = 2e^{-x} \) is a decreasing function. As \( x \) increases, \( e^{-x} \) decreases, which means \( y \) will also decrease. ### Step 2: Determine the behavior of \( y \) - At \( x = 0 \): \[ y = 2e^{0} = 2 \] - As \( x \to \infty \): \[ y \to 0 \] ### Step 3: Identify the intervals for the greatest integer function - The greatest integer function \([y]\) will take different values based on the value of \( y \): - For \( 0 \leq x < \log 2 \), \( 1 < y < 2 \) so \([y] = 1\). - For \( x \geq \log 2 \), \( y < 1 \) so \([y] = 0\). ### Step 4: Break the integral into two parts We can break the integral into two parts based on the value of \( x \): \[ \int_{0}^{\infty} [2e^{-x}] \, dx = \int_{0}^{\log 2} [2e^{-x}] \, dx + \int_{\log 2}^{\infty} [2e^{-x}] \, dx \] ### Step 5: Evaluate the first integral For \( x \in [0, \log 2] \): \[ \int_{0}^{\log 2} [2e^{-x}] \, dx = \int_{0}^{\log 2} 1 \, dx = x \bigg|_{0}^{\log 2} = \log 2 - 0 = \log 2 \] ### Step 6: Evaluate the second integral For \( x \in [\log 2, \infty) \): \[ \int_{\log 2}^{\infty} [2e^{-x}] \, dx = \int_{\log 2}^{\infty} 0 \, dx = 0 \] ### Step 7: Combine the results Adding the two parts together: \[ \int_{0}^{\infty} [2e^{-x}] \, dx = \log 2 + 0 = \log 2 \] ### Final Answer: \[ \int_{0}^{\infty} [2e^{-x}] \, dx = \log 2 \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

Consider f(x)={: {(x|x|,,x = 1):} Where [.] denotes the greatest integer function then the value of int_(-2)^(2)f(x)dx, is

Let [.]denote the greatest integer function, then the value of int_(5)^(15) x[x^(2)]dx , is

If [:] denotes the greatest integer function, then find the value of int_(1)^(2)[3x]dx

int_(0)^(2pi)[|sin x|+|cos x|]dx , where [.] denotes the greatest integer function, is equal to :

The value of int_(1)^(2)(x^([x^(2)])+[x^(2)]^(x))dx, where [.] denotes the greatest integer function,is equal to

If [dot] denotes the greatest integer function, then find the value of int_1^2[3x]dx

int_(0)^([x]//3) (8^(x))/(2^([3x]))dx where [.] denotes the greatest integer function, is equal to

int_(-1)^(2)[([x])/(1+x^(2))]dx , where [.] denotes the greatest integer function, is equal to

The value of int_(-1)^(3){|x-2|+[x]} dx , where [.] denotes the greatest integer function, is equal to

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |