Home
Class 12
MATHS
int(1//e)^e |log x|dx=...

`int_(1//e)^e |log x|dx`=

A

`2(1- (1)/(e ))`

B

`2((1)/(e )-1)`

C

`2- (1)/(e )`

D

`2+ (1)/(e )`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{1}{e}}^{e} |\log x| \, dx \), we first need to analyze the behavior of the function \( |\log x| \) over the interval from \( \frac{1}{e} \) to \( e \). ### Step 1: Determine the intervals where \( \log x \) is positive or negative - For \( x < 1 \), \( \log x < 0 \) (negative). - For \( x = 1 \), \( \log x = 0 \). - For \( x > 1 \), \( \log x > 0 \) (positive). Given the limits of integration \( \frac{1}{e} \) and \( e \): - \( \log \left( \frac{1}{e} \right) = -1 \) (negative) - \( \log(1) = 0 \) (zero) - \( \log(e) = 1 \) (positive) ### Step 2: Break the integral into two parts We can split the integral at \( x = 1 \): \[ \int_{\frac{1}{e}}^{e} |\log x| \, dx = \int_{\frac{1}{e}}^{1} -\log x \, dx + \int_{1}^{e} \log x \, dx \] ### Step 3: Calculate the first integral \( \int_{\frac{1}{e}}^{1} -\log x \, dx \) Using integration by parts, let: - \( u = -\log x \) → \( du = -\frac{1}{x} \, dx \) - \( dv = dx \) → \( v = x \) The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Thus, \[ \int -\log x \, dx = -x \log x + \int x \cdot \frac{1}{x} \, dx = -x \log x + x \] Now we evaluate from \( \frac{1}{e} \) to \( 1 \): \[ \left[-x \log x + x\right]_{\frac{1}{e}}^{1} = \left[-1 \cdot \log(1) + 1\right] - \left[-\frac{1}{e} \cdot \log\left(\frac{1}{e}\right) + \frac{1}{e}\right] \] Calculating this gives: \[ = [0 + 1] - \left[-\frac{1}{e} \cdot (-1) + \frac{1}{e}\right] = 1 - \left[\frac{1}{e} + \frac{1}{e}\right] = 1 - \frac{2}{e} \] ### Step 4: Calculate the second integral \( \int_{1}^{e} \log x \, dx \) Using integration by parts again: Let: - \( u = \log x \) → \( du = \frac{1}{x} \, dx \) - \( dv = dx \) → \( v = x \) Then, \[ \int \log x \, dx = x \log x - \int x \cdot \frac{1}{x} \, dx = x \log x - x \] Now evaluate from \( 1 \) to \( e \): \[ \left[x \log x - x\right]_{1}^{e} = \left[e \cdot \log e - e\right] - \left[1 \cdot \log 1 - 1\right] \] Calculating this gives: \[ = [e \cdot 1 - e] - [0 - 1] = [e - e] + 1 = 1 \] ### Step 5: Combine both integrals Now we combine the results: \[ \int_{\frac{1}{e}}^{e} |\log x| \, dx = \left(1 - \frac{2}{e}\right) + 1 = 2 - \frac{2}{e} \] ### Final Answer Thus, the value of the integral is: \[ \int_{\frac{1}{e}}^{e} |\log x| \, dx = 2 \left(1 - \frac{1}{e}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

The value of int_(1//e )^(e )(|log x|)/(x^(2))dx , is

int_(1)^(e) log (x) dx=

If I=int_((1)/(e))^(e)|log x|(dx)/(x^(2)), then I equals (A) 2 (B) (2)/(e)(C)2(1-(1)/(e))(D)0

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

int_(e )^(e^(2))log x dx =

Evaluate :int_(1)^(e)(log x)/(x)dx

int_(1)^(x)log_(e)[x]dx

int_(1//e)^(e) (dx)/(x(log x)^(1//3))

int_(1)^(e)(1+log x)/(x)dx=

"int_(1)^(e)(1+log x)/(x)dx=

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |