Home
Class 12
MATHS
If [x] denotes the greatest integer func...

If [x] denotes the greatest integer function then `int_(0.5)^(4.5) [x] dx+ int_(-1)^(1) |x| dx` is equal to

A

9

B

8

C

7

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the following expression: \[ I = \int_{0.5}^{4.5} [x] \, dx + \int_{-1}^{1} |x| \, dx \] where \([x]\) denotes the greatest integer function. ### Step 1: Evaluate the first integral \(I_1 = \int_{0.5}^{4.5} [x] \, dx\) We will break this integral into parts based on the intervals where the greatest integer function \([x]\) remains constant: 1. From \(0.5\) to \(1\): \([x] = 0\) 2. From \(1\) to \(2\): \([x] = 1\) 3. From \(2\) to \(3\): \([x] = 2\) 4. From \(3\) to \(4\): \([x] = 3\) 5. From \(4\) to \(4.5\): \([x] = 4\) Thus, we can write: \[ I_1 = \int_{0.5}^{1} 0 \, dx + \int_{1}^{2} 1 \, dx + \int_{2}^{3} 2 \, dx + \int_{3}^{4} 3 \, dx + \int_{4}^{4.5} 4 \, dx \] Calculating each part: - \(\int_{0.5}^{1} 0 \, dx = 0\) - \(\int_{1}^{2} 1 \, dx = [x]_{1}^{2} = 2 - 1 = 1\) - \(\int_{2}^{3} 2 \, dx = 2[x]_{2}^{3} = 2(3 - 2) = 2\) - \(\int_{3}^{4} 3 \, dx = 3[x]_{3}^{4} = 3(4 - 3) = 3\) - \(\int_{4}^{4.5} 4 \, dx = 4[x]_{4}^{4.5} = 4(4.5 - 4) = 2\) Now, summing these values: \[ I_1 = 0 + 1 + 2 + 3 + 2 = 8 \] ### Step 2: Evaluate the second integral \(I_2 = \int_{-1}^{1} |x| \, dx\) We will break this integral into two parts based on the definition of \(|x|\): 1. From \(-1\) to \(0\): \(|x| = -x\) 2. From \(0\) to \(1\): \(|x| = x\) Thus, we can write: \[ I_2 = \int_{-1}^{0} -x \, dx + \int_{0}^{1} x \, dx \] Calculating each part: - \(\int_{-1}^{0} -x \, dx = -\left[\frac{x^2}{2}\right]_{-1}^{0} = -\left(0 - \frac{(-1)^2}{2}\right) = \frac{1}{2}\) - \(\int_{0}^{1} x \, dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1^2}{2} - 0 = \frac{1}{2}\) Now, summing these values: \[ I_2 = \frac{1}{2} + \frac{1}{2} = 1 \] ### Step 3: Combine the results Now, we can combine both integrals to find \(I\): \[ I = I_1 + I_2 = 8 + 1 = 9 \] ### Final Answer Thus, the final answer is: \[ \boxed{9} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

If [:] denotes the greatest integer function, then find the value of int_(1)^(2)[3x]dx

Let [1 denote the greatest integet function then the value int_(0)^(1.5)x[x^(2)].dx

Let [.]denote the greatest integer function, then the value of int_(5)^(15) x[x^(2)]dx , is

f(x)={3[x]-5(|x|)/(x),x!=0 and 2,x=0 where [.] denotes the greatest integer function,then int_(-(3)/(2))^(2)f(x)dx equals

Let f : R to R is a function defined as f(x) where = {(|x-[x]| ,:[x] "is odd"),(|x - [x + 1]| ,:[x] "is even"):} [.] denotes the greatest integer function, then int_(-2)^(4) dx is equal to

Consider f(x)={: {(x|x|,,x = 1):} Where [.] denotes the greatest integer function then the value of int_(-2)^(2)f(x)dx, is

Let [x] denote the greatest integer less than or equal to x . Then, int_(0)^(1.5)[x]dx=?

If int_(-a)^(a) ( | x | + |x-2 |) dx =22 , ( a gt 2) and [x] denotes the greatest integer le x , then int_(-a)^(a) (x +[x])dx is equal to ______

Let [x] denote the greatest integer less than or equal to x . Then, int_(1)^(-1)[x]dx=?

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |