Home
Class 12
MATHS
int(-1)^(3) {|x-1|+ [x]} dx with usual n...

`int_(-1)^(3) {|x-1|+ [x]} dx` with usual notations is

A

3

B

4

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-1}^{3} \left( |x-1| + [x] \right) dx \), we will break it down into two parts: the absolute value function \( |x-1| \) and the greatest integer function \( [x] \). ### Step 1: Break the integral into two parts We can express the integral as: \[ I = \int_{-1}^{3} |x-1| \, dx + \int_{-1}^{3} [x] \, dx \] Let \( I_1 = \int_{-1}^{3} |x-1| \, dx \) and \( I_2 = \int_{-1}^{3} [x] \, dx \). ### Step 2: Evaluate \( I_1 = \int_{-1}^{3} |x-1| \, dx \) The absolute value function \( |x-1| \) changes at \( x = 1 \): - For \( x < 1 \), \( |x-1| = -(x-1) = 1-x \) - For \( x \geq 1 \), \( |x-1| = x-1 \) Thus, we can split the integral at \( x = 1 \): \[ I_1 = \int_{-1}^{1} (1-x) \, dx + \int_{1}^{3} (x-1) \, dx \] ### Step 3: Compute \( \int_{-1}^{1} (1-x) \, dx \) \[ \int_{-1}^{1} (1-x) \, dx = \left[ x - \frac{x^2}{2} \right]_{-1}^{1} = \left( 1 - \frac{1^2}{2} \right) - \left( -1 - \frac{(-1)^2}{2} \right) \] Calculating this gives: \[ = \left( 1 - \frac{1}{2} \right) - \left( -1 - \frac{1}{2} \right) = \frac{1}{2} + \frac{3}{2} = 2 \] ### Step 4: Compute \( \int_{1}^{3} (x-1) \, dx \) \[ \int_{1}^{3} (x-1) \, dx = \left[ \frac{x^2}{2} - x \right]_{1}^{3} = \left( \frac{3^2}{2} - 3 \right) - \left( \frac{1^2}{2} - 1 \right) \] Calculating this gives: \[ = \left( \frac{9}{2} - 3 \right) - \left( \frac{1}{2} - 1 \right) = \left( \frac{9}{2} - \frac{6}{2} \right) - \left( \frac{1}{2} - \frac{2}{2} \right) = \frac{3}{2} + \frac{1}{2} = 2 \] ### Step 5: Combine results for \( I_1 \) Thus, we have: \[ I_1 = 2 + 2 = 4 \] ### Step 6: Evaluate \( I_2 = \int_{-1}^{3} [x] \, dx \) The greatest integer function \( [x] \) is piecewise constant. We break it at the integers: \[ I_2 = \int_{-1}^{0} (-1) \, dx + \int_{0}^{1} (0) \, dx + \int_{1}^{2} (1) \, dx + \int_{2}^{3} (2) \, dx \] ### Step 7: Compute each part of \( I_2 \) 1. \( \int_{-1}^{0} (-1) \, dx = -1 \cdot (0 - (-1)) = -1 \) 2. \( \int_{0}^{1} (0) \, dx = 0 \) 3. \( \int_{1}^{2} (1) \, dx = 1 \cdot (2 - 1) = 1 \) 4. \( \int_{2}^{3} (2) \, dx = 2 \cdot (3 - 2) = 2 \) ### Step 8: Combine results for \( I_2 \) Thus, we have: \[ I_2 = -1 + 0 + 1 + 2 = 2 \] ### Step 9: Combine \( I_1 \) and \( I_2 \) Finally, we find: \[ I = I_1 + I_2 = 4 + 2 = 6 \] ### Final Answer The value of the integral is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (5) Fill in the blanks|4 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (6) Multiple choice Questions|26 Videos
  • DEFINITE INTEGRAL

    ML KHANNA|Exercise Problem Set (4) Fill in the blanks|1 Videos
  • CORRELATION AND REGRESSION

    ML KHANNA|Exercise SELF ASSESSMENT TEST |10 Videos
  • DETERMINANTS

    ML KHANNA|Exercise Self Assessment Test |19 Videos

Similar Questions

Explore conceptually related problems

int_(-1)^(3)sin(x-[x])dx

int_(-1)^(3)sgn(x-[x])dx

int_(-1)^(2)|x^(3)-x|dx

int_(0)^(1)|3x-1|dx=

int_(-1)^(1)x^(3)|x|dx

int_(1)^(3)(2x+1)dx

int_(1)^(3)(3x-4)dx

int_(1)^(3)(3x-4)dx

int_(1)^(3)[3x]*dx

int_(-1)^(1)3x^(2)dx

ML KHANNA-DEFINITE INTEGRAL-Problem set (5) (Multiple Choice Questions)
  1. The value of the integral overset(1)underset(-1)int (x-[2x])dx,is

    Text Solution

    |

  2. int(0)^(3//2) [x^(2)] dx=

    Text Solution

    |

  3. Evaluate : int(0)^(2)[x^(2)]dx

    Text Solution

    |

  4. int(0)^(3) [x^(3)-3x^(2) + 2x] dx=

    Text Solution

    |

  5. The value of int(-pi//2)^(199pi//2) sqrt((1+cos 2x))dx is

    Text Solution

    |

  6. The expression (underset(0)overset(n)int[x]dx)/(underset(0)overset(n)i...

    Text Solution

    |

  7. int(0)^(n^(2)) [sqrtx] dx=

    Text Solution

    |

  8. The value of int(0)^([x]) {x-[x]} dx is

    Text Solution

    |

  9. int(3)^(6) 2[x] dx is equal to

    Text Solution

    |

  10. If [.] denotes the greatest integer function, then int(0)^(oo) [2e^(-x...

    Text Solution

    |

  11. Evaluate int(1)^(e^(6))[(logx)/3]dx, where [.] denotes the greatest in...

    Text Solution

    |

  12. The value of the integral underset(e^(-1))overset(e^(2))int |(log(e)x)...

    Text Solution

    |

  13. int(1//e)^e |log x|dx=

    Text Solution

    |

  14. If [x] denotes the greatest integer function then int(0.5)^(4.5) [x] d...

    Text Solution

    |

  15. int(0)^(5) [x] dx= ….., where [x] denotes the greatest integer functio...

    Text Solution

    |

  16. The value of the integral int(0)^(2) x[x] dx is where [x] is greatest ...

    Text Solution

    |

  17. int(-1)^(3) {|x-1|+ [x]} dx with usual notations is

    Text Solution

    |

  18. The value of sum(n=1)^1000 int(n-1)^n e^(x-[x])dx, where [x] is the gr...

    Text Solution

    |

  19. int(0)^(2pi) e^(cos x) cosx (sin x) dx=

    Text Solution

    |

  20. int(0)^(pi//3) [sqrt3 tan x] dx, where [.] denotes the greatest intege...

    Text Solution

    |