Home
Class 12
MATHS
If (x^2)/((x^(2)+1)(x^(2)+4))=(a)/(x^(2)...

If `(x^2)/((x^(2)+1)(x^(2)+4))=(a)/(x^(2)+1)+(b)/(x^(2)+4)` then `a+b=`

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^2}{(x^2 + 1)(x^2 + 4)} = \frac{a}{x^2 + 1} + \frac{b}{x^2 + 4} \] we will use the method of partial fractions. Here are the steps: ### Step 1: Rewrite the equation Let \( t = x^2 \). Then, we can rewrite the equation as: \[ \frac{t}{(t + 1)(t + 4)} = \frac{a}{t + 1} + \frac{b}{t + 4} \] ### Step 2: Find a common denominator The common denominator on the right-hand side is \( (t + 1)(t + 4) \). Thus, we can write: \[ \frac{a(t + 4) + b(t + 1)}{(t + 1)(t + 4)} = \frac{t}{(t + 1)(t + 4)} \] ### Step 3: Equate the numerators Since the denominators are equal, we can equate the numerators: \[ t = a(t + 4) + b(t + 1) \] ### Step 4: Expand the right-hand side Expanding the right-hand side gives: \[ t = at + 4a + bt + b \] Combining like terms, we have: \[ t = (a + b)t + (4a + b) \] ### Step 5: Set up equations Now, we can compare coefficients from both sides. From the equation: \[ t = (a + b)t + (4a + b) \] we can derive two equations: 1. Coefficient of \( t \): \( 1 = a + b \) 2. Constant term: \( 0 = 4a + b \) ### Step 6: Solve the system of equations From the first equation, we have: \[ b = 1 - a \] Substituting \( b \) in the second equation: \[ 0 = 4a + (1 - a) \] \[ 0 = 4a + 1 - a \] \[ 0 = 3a + 1 \] \[ 3a = -1 \quad \Rightarrow \quad a = -\frac{1}{3} \] Now substituting \( a \) back to find \( b \): \[ b = 1 - \left(-\frac{1}{3}\right) = 1 + \frac{1}{3} = \frac{4}{3} \] ### Step 7: Calculate \( a + b \) Now, we can find \( a + b \): \[ a + b = -\frac{1}{3} + \frac{4}{3} = \frac{3}{3} = 1 \] Thus, the final answer is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

If (1)/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) then

If (1)/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) then C+D=

If (1)/(x^(4)+x^(2)+1)=(Ax+B)/(x^(2)+x+1)+(Cx+D)/(x^(2)-x+1) then C+D

If int(dx)/(x^(4)+x^(2))=(A)/(x^(2))+(B)/(x)+ln|(x)/(x+1)|+C then

If int(dx)/(x^(2)(x^(4)+1)^(3//4))=A((x^(4)+1)/(x^(4)))^(B)+c, then

(3x+4)/((x+1)^(2)(x-1))=(A)/(x-1)+(B)/(x+1)+(C)/((x+1)^(2)) then A=

int(2x^(2)+3)/((x^(2)-1)(x^(2)+4))dx=alog((x+1)/(x-1))+b"tan"^(-1)(x)/(2) , then (a,b) is

If int(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C then

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C