Home
Class 12
MATHS
If (x^4)/((x-1)(x+2))=(1)/(3(x-1))-(16)/...

If `(x^4)/((x-1)(x+2))=(1)/(3(x-1))-(16)/(3(x+2))+ x^(2)-x+k`, then `k =`

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^4}{(x-1)(x+2)} = \frac{1}{3(x-1)} - \frac{16}{3(x+2)} + x^2 - x + k, \] we will first simplify the right-hand side by finding a common denominator. ### Step 1: Find a common denominator for the right-hand side The common denominator for the fractions on the right-hand side is \(3(x-1)(x+2)\). Rewriting the right-hand side: \[ \frac{1}{3(x-1)} = \frac{(x+2)}{3(x-1)(x+2)} \quad \text{and} \quad \frac{-16}{3(x+2)} = \frac{-16(x-1)}{3(x-1)(x+2)}. \] So, we can rewrite the right-hand side as: \[ \frac{x+2 - 16(x-1)}{3(x-1)(x+2)} + x^2 - x + k. \] ### Step 2: Combine the fractions Now, combine the fractions: \[ \frac{x + 2 - 16x + 16}{3(x-1)(x+2)} + x^2 - x + k = \frac{-15x + 18}{3(x-1)(x+2)} + x^2 - x + k. \] ### Step 3: Combine the entire right-hand side Now we rewrite the entire right-hand side: \[ \frac{-15x + 18}{3(x-1)(x+2)} + \frac{3(x^2 - x + k)(x-1)(x+2)}{3(x-1)(x+2)}. \] This gives us: \[ \frac{-15x + 18 + 3(x^2 - x + k)(x-1)(x+2)}{3(x-1)(x+2)}. \] ### Step 4: Set the numerators equal Since the denominators are equal, we can set the numerators equal: \[ x^4 = -15x + 18 + 3(x^2 - x + k)(x-1)(x+2). \] ### Step 5: Expand the right-hand side Now, we need to expand \(3(x^2 - x + k)(x-1)(x+2)\): 1. First, expand \((x-1)(x+2) = x^2 + x - 2\). 2. Now, multiply by \((x^2 - x + k)\): \[ (x^2 - x + k)(x^2 + x - 2) = x^4 + x^3 - 2x^2 - x^3 - x^2 + 2x + kx^2 + kx - 2k. \] This simplifies to: \[ x^4 + (k - 3)x^2 + (2 + k)x - 2k. \] Now, multiplying by 3 gives: \[ 3x^4 + 3(k - 3)x^2 + 3(2 + k)x - 6k. \] ### Step 6: Set the coefficients equal Now we have: \[ x^4 = -15x + 18 + 3x^4 + 3(k - 3)x^2 + 3(2 + k)x - 6k. \] Rearranging gives: \[ 0 = 3x^4 + (3(k - 3) + 15)x^2 + (3(2 + k) - 18)x - 6k + 18. \] ### Step 7: Coefficient comparison Since the coefficients of \(x^4\) must be equal, we have: 1. Coefficient of \(x^4\): \(1 = 3\) (not possible, so we ignore this). 2. Coefficient of \(x^2\): \(0 = 3(k - 3)\) implies \(k - 3 = 0\) or \(k = 3\). 3. Coefficient of \(x\): \(0 = 3(2 + k) - 18\). 4. Constant term: \(0 = -6k + 18\). ### Conclusion From \(k - 3 = 0\), we find: \[ k = 3. \] Thus, the value of \(k\) is \[ \boxed{3}. \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

If the third derivative of (x^(4))/((x-1)(x-2)) is (-12k)/((x-2)^(4))+(6)/((x-1)^(4)) , then the value of k is

((2x-1)/((x-1)(2x+3))=(1)/(5(x-1))+(k)/(5(2x+3))rArr k=

If (x-4)/(x^(2)-5x-2k)=(2)/(x-2)-(1)/(x+k), then

(x^(3))/((2x-1)(x-3)(x-2))=K+(A)/(2x-1)+(B)/(x-3)+(C)/(x-2) then K=

" If (3x^(3)-8x^(2)+10)/((x-1)^(4))=(3)/(x-1)+(1)/((x-1)^(2))-(7)/((x-1)^(3))+(k)/((x-1)^(2)) then "k=

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

16. "4^(x)-3^(x-(1)/(2))=3^(x+(1)/(2))-2^(2x-1).