Home
Class 12
MATHS
If (ax)/((x+2)(2x-3)) =(2)/(x+2) +(3)/(2...

If `(ax)/((x+2)(2x-3)) =(2)/(x+2) +(3)/(2x-3)`, then `a=`

A

`4`

B

`5`

C

`7`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{ax}{(x+2)(2x-3)} = \frac{2}{x+2} + \frac{3}{2x-3}, \] we will follow these steps: ### Step 1: Combine the right-hand side into a single fraction. To combine the fractions on the right-hand side, we need a common denominator, which is \((x+2)(2x-3)\). Thus, we rewrite the right-hand side: \[ \frac{2}{x+2} = \frac{2(2x-3)}{(x+2)(2x-3)} = \frac{4x - 6}{(x+2)(2x-3)}, \] \[ \frac{3}{2x-3} = \frac{3(x+2)}{(x+2)(2x-3)} = \frac{3x + 6}{(x+2)(2x-3)}. \] Now, we can combine these: \[ \frac{4x - 6 + 3x + 6}{(x+2)(2x-3)} = \frac{(4x + 3x - 6 + 6)}{(x+2)(2x-3)} = \frac{7x}{(x+2)(2x-3)}. \] ### Step 2: Set the left-hand side equal to the combined right-hand side. Now we have: \[ \frac{ax}{(x+2)(2x-3)} = \frac{7x}{(x+2)(2x-3)}. \] ### Step 3: Compare the numerators. Since the denominators are the same, we can equate the numerators: \[ ax = 7x. \] ### Step 4: Solve for \(a\). To find \(a\), we can divide both sides by \(x\) (assuming \(x \neq 0\)): \[ a = 7. \] Thus, the value of \(a\) is \[ \boxed{7}. \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

(x+3)/(2x+3)=(x+1)/(3x+2)

If (2x-7)^3+(2x-8)^3+(2x-3)^3=3(2x-7)(2x-8)( 2x-3) , then what is the value of x? यदि (2x-7)^3+(2x-8)^3+(2x-3)^3=3(2x-7)(2x-8)( 2x-3) है तो x का मान क्या है?

If (2x-7)^3+(2x-8)^3+(2x-3)^3= 3(2x -7)(2x - 8)(2x- 3 ) , then what is the value of x?/ यदि (2x-7)^3+(2x-8)^3+(2x-3)^3= 3(2x − 7)(2x − 8)(2x − 3 ) है, तो x का मान ज्ञात करें |

If (x+5) is the HCF of (x^(2)+2x3b) and (6x^(3)+ax^(2)+3x-10), then a-2b=

Solve for x : (x+ 3)/(x + 2) = (3x -7)/(2x - 3) , x =2 , (3)/(2)

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), (x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these