Home
Class 12
MATHS
If (x^(4)+24x^(2)+28)/((x^(2)+1)^3) =(A)...

If `(x^(4)+24x^(2)+28)/((x^(2)+1)^3) =(A)/(x^(2)+1)+(B)/((x^(2)+1)^2)+(C )/((x^(2)+1)^3)`, then

A

`A+B+C=28`

B

`A+B-C=18`

C

`A-B= -21`

D

`2A+B=24`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^4 + 24x^2 + 28}{(x^2 + 1)^3} = \frac{A}{x^2 + 1} + \frac{B}{(x^2 + 1)^2} + \frac{C}{(x^2 + 1)^3} \] we will first express the right-hand side with a common denominator, which is \((x^2 + 1)^3\). ### Step 1: Combine the Right-Hand Side We can rewrite the right-hand side as: \[ \frac{A(x^2 + 1)^2 + B(x^2 + 1) + C}{(x^2 + 1)^3} \] ### Step 2: Expand the Numerator Now we expand the numerator: \[ A(x^2 + 1)^2 = A(x^4 + 2x^2 + 1) = Ax^4 + 2Ax^2 + A \] \[ B(x^2 + 1) = Bx^2 + B \] Combining these, the numerator becomes: \[ Ax^4 + (2A + B)x^2 + (A + B + C) \] ### Step 3: Set Numerators Equal Now we set the numerators equal to each other: \[ x^4 + 24x^2 + 28 = Ax^4 + (2A + B)x^2 + (A + B + C) \] ### Step 4: Compare Coefficients We can compare the coefficients of \(x^4\), \(x^2\), and the constant term. 1. Coefficient of \(x^4\): \[ A = 1 \] 2. Coefficient of \(x^2\): \[ 2A + B = 24 \] 3. Constant term: \[ A + B + C = 28 \] ### Step 5: Substitute \(A\) into Other Equations From \(A = 1\): 1. Substitute into the second equation: \[ 2(1) + B = 24 \implies 2 + B = 24 \implies B = 22 \] 2. Substitute \(A\) and \(B\) into the third equation: \[ 1 + 22 + C = 28 \implies 23 + C = 28 \implies C = 5 \] ### Final Values Thus, we have: \[ A = 1, \quad B = 22, \quad C = 5 \] ### Summary The values of \(A\), \(B\), and \(C\) are: \[ A = 1, \quad B = 22, \quad C = 5 \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

(x^(2)+5x+1)/((x+1)(x+2)(x+3))=(A)/(x+1)+(B)/((x+1)(x+2))+(C)/((x+1)(x+2)(x+3)) then B=

(3x+4)/((x+1)^(2)(x-1))=(A)/(x-1)+(B)/(x+1)+(C)/((x+1)^(2)) then A=

(x^(4)+1)/(x(x^(2)+1)^(2))dx=A ln|x|+(B)/(1+x^(2))+C

int(sqrt(x^(2)+1))/(x^(4))dx-(a)-(1)/(3)((x^(2)+1)^((3)/(2)))/(x^(3))+C(b)x^(3)(x^(2)+1)^(-(1)/(2))+C(c)(sqrt(x^(2)+1))/(x^(2))+C(d)-(1)/(3)((x^(2)+1)^((3)/(2)))/(x^(2))+C

(d)/(dx)[log{e^(x)((x-2)/(x+2))^(3/4)}] equals (x^(2)-1)/(x^(2)-4) (b) 1 (c) (x^(2)+1)/(x^(2)-4) (d) e^(x)(x^(2)-1)/(x^(2)-4)

If "int(x^(1/3))/((1+x^(2/3))^(3))dx=(3)/(4)(x^(a))/((1+x^(2/3))^(2))+c ," then "a=

int(sqrt(x))/((1+x^(2))^((7)/(4)))dx=(A)(2)/(3)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C(B)(1)/(3)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C(C)(1)/(2)(x^((1)/(2)))/((x^(2)+1)^((3)/(4)))+C(D)(x^((3)/(2)))/((x^(2)+1)^((3)/(4)))+C

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)+(Bx+C)/(2x^(2)+3) then A+C-B=

If x^(2)+3x+1=0 then find x^(3)+(1)/(x^(3)),x^(4)+(1)/(x^(4)),x^(2)-(1)/(x^(2)),x^(2)+(1)/(x^(2))