Home
Class 12
MATHS
If (3x^(2)+5)/((x^(2)+1)^2)= (a)/(x^(2)+...

If `(3x^(2)+5)/((x^(2)+1)^2)= (a)/(x^(2)+1)+(b)/((x^(2)+1)^2)` then `(a, b)=`

A

`(2,3)`

B

`(3,2)`

C

`(-2,3)`

D

`(-3,2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{3x^2 + 5}{(x^2 + 1)^2} = \frac{a}{x^2 + 1} + \frac{b}{(x^2 + 1)^2} \] we will express the right-hand side with a common denominator and then compare coefficients. ### Step 1: Rewrite the right-hand side with a common denominator The common denominator for the right-hand side is \((x^2 + 1)^2\). Thus, we can rewrite the right-hand side as: \[ \frac{a}{x^2 + 1} + \frac{b}{(x^2 + 1)^2} = \frac{a(x^2 + 1) + b}{(x^2 + 1)^2} \] ### Step 2: Set the numerators equal Now we have: \[ \frac{3x^2 + 5}{(x^2 + 1)^2} = \frac{a(x^2 + 1) + b}{(x^2 + 1)^2} \] Since the denominators are equal, we can set the numerators equal to each other: \[ 3x^2 + 5 = a(x^2 + 1) + b \] ### Step 3: Expand the right-hand side Expanding the right-hand side gives: \[ 3x^2 + 5 = ax^2 + a + b \] ### Step 4: Collect like terms Now, we can rearrange this equation: \[ 3x^2 + 5 = ax^2 + (a + b) \] ### Step 5: Compare coefficients Now we can compare the coefficients of \(x^2\) and the constant terms on both sides: 1. Coefficient of \(x^2\): \[ a = 3 \] 2. Constant term: \[ a + b = 5 \] ### Step 6: Substitute to find \(b\) Now that we know \(a = 3\), we can substitute this into the second equation: \[ 3 + b = 5 \] Subtracting 3 from both sides gives: \[ b = 2 \] ### Final Result Thus, the values of \(a\) and \(b\) are: \[ (a, b) = (3, 2) \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

if (x^(2)+x+1)/(x^(2)+2x+1)=A+(B)/(x+1)+(C)/((x+1)^(2)) then A-B=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)+(Bx+C)/(2x^(2)+3) then A+C-B=

If (2x-1)/((x+1)(x^(2)-1))=(A)/(x-1)+(B)/(x+1)+(C )/((x+1)^(2)) , then A , B , C , respectively are _______.

If (3)/((x+2)(2x+1))=(a)/(2x+1)+(b)/(x+2) then b= ?

If (2x+5)/((x-1)(x-2))=(A)/((x-1))+(B)/((x-2)) then (A,B) is

If : int(2x^(2)+3)/((x^(2)-1)(x^(2)-4))dx=log[((x-2)/(x+2))^(a).((x+1)/(x-1))^(b)]+c then : (a, b)-=