Home
Class 12
MATHS
If (ax+b)/((3x+4)^2)=(1)/((3x+4))-(3)/((...

If `(ax+b)/((3x+4)^2)=(1)/((3x+4))-(3)/((3x+4)^2)` then

A

`a+b=4`

B

`a-b=3`

C

`a-b=2`

D

`a+b=5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{ax+b}{(3x+4)^2} = \frac{1}{3x+4} - \frac{3}{(3x+4)^2} \] we will follow these steps: ### Step 1: Rewrite the Right-Hand Side First, we need to combine the right-hand side into a single fraction. The right-hand side is \[ \frac{1}{3x+4} - \frac{3}{(3x+4)^2} \] To combine these fractions, we need a common denominator, which is \((3x+4)^2\): \[ \frac{1 \cdot (3x+4) - 3}{(3x+4)^2} = \frac{3x + 4 - 3}{(3x+4)^2} = \frac{3x + 1}{(3x+4)^2} \] ### Step 2: Set the Numerators Equal Now we have: \[ \frac{ax+b}{(3x+4)^2} = \frac{3x + 1}{(3x+4)^2} \] Since the denominators are the same, we can set the numerators equal to each other: \[ ax + b = 3x + 1 \] ### Step 3: Compare Coefficients Next, we compare the coefficients of \(x\) and the constant terms on both sides: 1. Coefficient of \(x\): \(a = 3\) 2. Constant term: \(b = 1\) ### Step 4: Conclusion Thus, we find: \[ a = 3 \quad \text{and} \quad b = 1 \] ### Step 5: Verify Conditions We can check if these values satisfy the conditions given in the problem: 1. \(A + B = 3 + 1 = 4\) (True) 2. \(A - B = 3 - 1 = 2\) (True) ### Final Answer The values of \(a\) and \(b\) are: \[ a = 3, \quad b = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

If the coficient of x in the expansion of (1+ax)^(8)(1+3x)^(4)-(1+x)^(3)(1+2x)^(4) is zero,then a =

3x-(x-2)/(3)=4-(x-1)/(4)

If for AX=B, B=[[9], [52], [0]] and A^(-1)=[[3, -(1)/(2), -(1)/(2)], [-4, (3)/(4), (5)/(4)], [2, -(1)/(4), -(3)/(4)]] , then X=

(if^(4)-3x+3)/((x-1)^(3))=Ax+B+(C)/(x-1)+(D)/((x-1)^(2))+(E)/((x-1)^(3)) then

Check x=2 in (3x-1)/(4)+(3)/(4)=2

If (a+bx)^(-2)=(1)/(4)-3x+..., then (a,b)=

If x in R - {0} then minimum possible value of the expression (1)/(7)[(3x^(2)+(4)/(3x^(2))+1)^(2)-2(3x^(2)+(4)/(3x^(2)))+4]

If 2x-(3)/(2)=5x+(3)/(4), then x=(3)/(4)(b)-(3)/(4)(4)/(3)(d)-(4)/(3)

If int(e^(ax)+bx)dx=4e^(4x)+(3x^(2))/(2), find the values of a and b.