Home
Class 12
MATHS
If (x^(3)-x^(2)-13x+25)/((x-2)^(2)(x-3)^...

If `(x^(3)-x^(2)-13x+25)/((x-2)^(2)(x-3)^2)= (A)/(x-2)+(B)/((x-2)^2)+(C )/((x-3))+(D)/((x-3)^2)` then A, B, C, D are

A

1,3,0,4

B

1,0,3,4

C

1,4,0,3

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{x^3 - x^2 - 13x + 25}{(x-2)^2 (x-3)^2} = \frac{A}{x-2} + \frac{B}{(x-2)^2} + \frac{C}{(x-3)} + \frac{D}{(x-3)^2} \] we will find the values of \(A\), \(B\), \(C\), and \(D\) through the method of partial fractions. ### Step 1: Set Up the Equation We start by expressing the left-hand side in terms of the right-hand side: \[ x^3 - x^2 - 13x + 25 = A(x-2)(x-3)^2 + B(x-3)^2 + C(x-2)^2(x-3) + D(x-2)^2 \] ### Step 2: Expand the Right-Hand Side We need to expand the right-hand side to compare coefficients. 1. **Expand \(A(x-2)(x-3)^2\)**: \[ = A(x-2)(x^2 - 6x + 9) = A(x^3 - 8x^2 + 21x - 18) \] 2. **Expand \(B(x-3)^2\)**: \[ = B(x^2 - 6x + 9) \] 3. **Expand \(C(x-2)^2(x-3)\)**: \[ = C((x^2 - 4x + 4)(x-3)) = C(x^3 - 7x^2 + 12x - 12) \] 4. **Expand \(D(x-2)^2\)**: \[ = D(x^2 - 4x + 4) \] ### Step 3: Combine All Terms Now combine all the expanded terms: \[ (A + C)x^3 + (-8A - 7C + B + D)x^2 + (21A - 6B + 12C - 4D)x + (-18A + 9B - 12C + 4D) = x^3 - x^2 - 13x + 25 \] ### Step 4: Set Up the System of Equations By equating the coefficients from both sides, we get the following system of equations: 1. \(A + C = 1\) (coefficient of \(x^3\)) 2. \(-8A - 7C + B + D = -1\) (coefficient of \(x^2\)) 3. \(21A - 6B + 12C - 4D = -13\) (coefficient of \(x\)) 4. \(-18A + 9B - 12C + 4D = 25\) (constant term) ### Step 5: Solve the System of Equations 1. From equation (1): \[ C = 1 - A \] 2. Substitute \(C\) into equations (2), (3), and (4): - For equation (2): \[ -8A - 7(1 - A) + B + D = -1 \implies -8A - 7 + 7A + B + D = -1 \implies -A + B + D = 6 \quad \text{(Equation 5)} \] - For equation (3): \[ 21A - 6B + 12(1 - A) - 4D = -13 \implies 21A - 6B + 12 - 12A - 4D = -13 \implies 9A - 6B - 4D = -25 \quad \text{(Equation 6)} \] - For equation (4): \[ -18A + 9B - 12(1 - A) + 4D = 25 \implies -18A + 9B - 12 + 12A + 4D = 25 \implies -6A + 9B + 4D = 37 \quad \text{(Equation 7)} \] ### Step 6: Solve Equations 5, 6, and 7 Now, we have three equations (5, 6, and 7) to solve for \(A\), \(B\), and \(D\). 1. From equation (5): \[ B + D = A + 6 \] 2. Substitute \(B\) from equation (5) into equations (6) and (7) and solve for \(A\), \(B\), \(C\), and \(D\). After solving the equations, we find: - \(A = 1\) - \(B = 3\) - \(C = 0\) - \(D = 4\) ### Final Values Thus, the values are: \[ A = 1, \quad B = 3, \quad C = 0, \quad D = 4 \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

13) If (x+1)/(x^(2)(x+2))=(A)/(x)+(B)/(x^(2))+(C)/(x^(3))+(D)/(x^(4))+(E)/(x+2) then B+D+E=

(x^(3))/((2x-1)(x-3)(x-2))=K+(A)/(2x-1)+(B)/(x-3)+(C)/(x-2) then K=

If (3x^(2)+14x+10)/(x^(2)(x+2))=(A)/(x)+(B)/(x^(2))+(C )/(x+2) , then A , B and C , respectively are _______.

(2x^(3)+x^(2)-5)/(x^(4)-25)=(Ax+B)/(x^(2)-5)+(Cx+D)/(x^(2)+5) rArr(A,B,C,D)

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2),((x-1)^2 (x-2)^2, (x-3)^2), (x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

If (4x^(2)+5x+6)/(x^(2)(x+3))=(A)/(x)+(B)/(x^(2))+(C )/(x+3) , then 2A+3B+4C= __________.

If x/((2x-1)(x+2)(x-3))=A+B/(2x-1)+C/(x+2)+D/(x-3) then A=

If (3x+2)/((x+1)(2x^(2)+3))=(A)/(x+1)+(Bx+C)/(2x^(2)+3) then A+C-B=