Home
Class 12
MATHS
(2x)/(x^(4)+x^(2)+1)=...

`(2x)/(x^(4)+x^(2)+1)=`

A

`(x+1)/(x^(2)-x+1)+(x-1)/(x^(2)+x-1)`

B

`(x-1)/(x^(2)-x+1)-(x+1)/(x^(2)+x-1)`

C

`(x)/(x^(2)-x+1)+(x+1)/(x^(2)+x-1)`

D

`(1)/(x^(2)-x+1)-(1)/(x^(2)+x+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{2x}{x^4 + x^2 + 1}\) using partial fractions, we will follow these steps: ### Step 1: Factor the Denominator First, we need to factor the denominator \(x^4 + x^2 + 1\). We can rewrite it as: \[ x^4 + x^2 + 1 = (x^2)^2 + (x^2) + 1 \] Let \(y = x^2\), then it becomes \(y^2 + y + 1\). This quadratic does not factor nicely over the reals, but we can use the roots of unity or complete the square to find its factors. The roots of \(y^2 + y + 1 = 0\) are: \[ y = \frac{-1 \pm \sqrt{-3}}{2} = \frac{-1 \pm i\sqrt{3}}{2} \] Thus, we can express \(x^4 + x^2 + 1\) as: \[ (x^2 - \frac{-1 + i\sqrt{3}}{2})(x^2 - \frac{-1 - i\sqrt{3}}{2}) \] However, for our purposes, we can express it as: \[ (x^2 - x + 1)(x^2 + x + 1) \] ### Step 2: Set Up Partial Fractions Now, we can express \(\frac{2x}{x^4 + x^2 + 1}\) in terms of partial fractions: \[ \frac{2x}{(x^2 - x + 1)(x^2 + x + 1)} = \frac{Ax + B}{x^2 - x + 1} + \frac{Cx + D}{x^2 + x + 1} \] ### Step 3: Combine the Right Side To combine the right side, we take the common denominator: \[ \frac{(Ax + B)(x^2 + x + 1) + (Cx + D)(x^2 - x + 1)}{(x^2 - x + 1)(x^2 + x + 1)} \] This gives us: \[ Ax^3 + Ax^2 + Ax + Bx^2 + Bx + B + Cx^3 - Cx^2 + Cx + Dx^2 - Dx + D \] Combining like terms, we have: \[ (A + C)x^3 + (A + B - C + D)x^2 + (A + B + C - D)x + (B + D) \] ### Step 4: Set Up Equations Now, we can set up equations by comparing coefficients from both sides: 1. For \(x^3\): \(A + C = 0\) 2. For \(x^2\): \(A + B - C + D = 0\) 3. For \(x\): \(A + B + C - D = 2\) 4. For the constant term: \(B + D = 0\) ### Step 5: Solve the System of Equations From equation 1, we have \(C = -A\). Substituting into the other equations: - From equation 4: \(D = -B\) - Substitute \(C\) and \(D\) into equation 2: \[ A + B - (-A) - B = 0 \implies 2A = 0 \implies A = 0 \implies C = 0 \] - Substitute \(A\) and \(C\) into equation 3: \[ 0 + B + 0 - (-B) = 2 \implies 2B = 2 \implies B = 1 \implies D = -1 \] ### Step 6: Write the Partial Fraction Decomposition Now we can write the partial fractions: \[ \frac{2x}{(x^2 - x + 1)(x^2 + x + 1)} = \frac{0 \cdot x + 1}{x^2 - x + 1} + \frac{0 \cdot x - 1}{x^2 + x + 1} \] This simplifies to: \[ \frac{1}{x^2 - x + 1} - \frac{1}{x^2 + x + 1} \] ### Final Result Thus, the partial fraction decomposition of \(\frac{2x}{x^4 + x^2 + 1}\) is: \[ \frac{1}{x^2 - x + 1} - \frac{1}{x^2 + x + 1} \]
Promotional Banner

Topper's Solved these Questions

  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (TRUE AND FALSE)|5 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PARTIAL FRACTION

    ML KHANNA|Exercise PROBLEM SET-1 (FILL IN THE BLANKS)|8 Videos
  • PAIR OF STRAIGHT LINES

    ML KHANNA|Exercise SELF ASSESSMENT TEST|10 Videos
  • PERMUTATIONS AND COMBINATIONS

    ML KHANNA|Exercise SELF ASSESSMENT TEST|20 Videos

Similar Questions

Explore conceptually related problems

Resolve into partial fractions : (x^(2)x-1)/(x^(4)+x^(2)+1) .

Find the partial fractions of (2x+3)/(x^(4)+x^(2)+1) .

Integrate x^(2)//(x^(4)+x^(2)+1)

Calculate the integral int_(-5)^(5) (x^(5) sin^(2) x)/( x^(4) + 2x^(2) + 1) dx

int(x^(2)+1)/(x^(4)+x^(2)+1)dx

int(x^(2)-1)/(x^(4)-x^(2)+1)dx

int(x^(2)+1)/(x^(4)-x^(2)+1)

int(x^(2)+1)/(x^(4)-x^(2)+1)dx=

int(x^(2)+1)/(x^(4)-x^(2)+1)dx= . . .

int(x^(2)-1)/(x^(4)+x^(2)+1)dx=