Home
Class 12
MATHS
If cos(alpha+beta)=4/5; sin(alpha-beta)=...

If `cos(alpha+beta)=4/5; sin(alpha-beta)=5/13` and `alpha,beta` lie between `0&pi/4` then find the value of `tan2alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given values of \( \cos(\alpha + \beta) \) and \( \sin(\alpha - \beta) \) to find \( \tan(2\alpha) \). ### Step 1: Find \( \tan(\alpha + \beta) \) We know that: \[ \cos(\alpha + \beta) = \frac{4}{5} \] Using the Pythagorean theorem, we can find \( \sin(\alpha + \beta) \): \[ \sin^2(\alpha + \beta) + \cos^2(\alpha + \beta) = 1 \] \[ \sin^2(\alpha + \beta) + \left(\frac{4}{5}\right)^2 = 1 \] \[ \sin^2(\alpha + \beta) + \frac{16}{25} = 1 \] \[ \sin^2(\alpha + \beta) = 1 - \frac{16}{25} = \frac{9}{25} \] \[ \sin(\alpha + \beta) = \frac{3}{5} \] Now, we can find \( \tan(\alpha + \beta) \): \[ \tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4} \] **Hint:** Use the Pythagorean identity to find \( \sin \) from \( \cos \). ### Step 2: Find \( \tan(\alpha - \beta) \) We are given: \[ \sin(\alpha - \beta) = \frac{5}{13} \] Using the Pythagorean theorem again, we can find \( \cos(\alpha - \beta) \): \[ \sin^2(\alpha - \beta) + \cos^2(\alpha - \beta) = 1 \] \[ \left(\frac{5}{13}\right)^2 + \cos^2(\alpha - \beta) = 1 \] \[ \frac{25}{169} + \cos^2(\alpha - \beta) = 1 \] \[ \cos^2(\alpha - \beta) = 1 - \frac{25}{169} = \frac{144}{169} \] \[ \cos(\alpha - \beta) = \frac{12}{13} \] Now, we can find \( \tan(\alpha - \beta) \): \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\frac{5}{13}}{\frac{12}{13}} = \frac{5}{12} \] **Hint:** Again, apply the Pythagorean theorem to find \( \cos \) from \( \sin \). ### Step 3: Find \( \tan(2\alpha) \) Using the identity: \[ \tan(2\alpha) = \tan(\alpha + \beta + \alpha - \beta) = \frac{\tan(\alpha + \beta) + \tan(\alpha - \beta)}{1 - \tan(\alpha + \beta) \tan(\alpha - \beta)} \] Substituting the values we found: \[ \tan(2\alpha) = \frac{\frac{3}{4} + \frac{5}{12}}{1 - \left(\frac{3}{4} \cdot \frac{5}{12}\right)} \] **Step 4: Simplify the numerator and denominator** Finding a common denominator for the numerator: \[ \frac{3}{4} = \frac{9}{12} \] So, \[ \tan(2\alpha) = \frac{\frac{9}{12} + \frac{5}{12}}{1 - \frac{15}{48}} = \frac{\frac{14}{12}}{1 - \frac{15}{48}} \] Calculating the denominator: \[ 1 - \frac{15}{48} = \frac{48 - 15}{48} = \frac{33}{48} \] **Step 5: Final calculation** Now substituting back into the equation: \[ \tan(2\alpha) = \frac{\frac{14}{12}}{\frac{33}{48}} = \frac{14 \cdot 48}{12 \cdot 33} = \frac{672}{396} \] Simplifying: \[ \tan(2\alpha) = \frac{56}{33} \] ### Final Answer: \[ \tan(2\alpha) = \frac{56}{33} \]
Promotional Banner

Topper's Solved these Questions

  • COMPOUND ANGLES

    ALLEN|Exercise EX-S2|9 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-JM|7 Videos
  • COMPOUND ANGLES

    ALLEN|Exercise EX-02|19 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    ALLEN|Exercise All Questions|1 Videos
  • DETERMINANTS

    ALLEN|Exercise All Questions|115 Videos

Similar Questions

Explore conceptually related problems

If cos(alpha+beta)=0 then sin(alpha+2beta)=

It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)a n dalpha,beta lie between 0a n dpi/4 , prove that tan2alpha=(56)/(33)

It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)a n dalpha,beta lie between 0a n dpi/4 , prove that tan2alpha=(56)/(33)

If cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13) , where alpha lie between 0 and (pi)/(4) , then find that value of tan2alpha .

If cos (alpha + beta) = (4)/(5), sin (alpha - beta) = (5)/(13) and alpha and beta lie between 0 and (pi)/(4) , find tan 2 alpha .

Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,beta<= pi/4 then find tan (2alpha)

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

alpha + beta = 5 , alpha beta= 6 .find alpha - beta

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).