Home
Class 12
MATHS
sin^(-1) sqrt(2-x)=cos^(-1) sqrt(x-1) ho...

`sin^(-1) sqrt(2-x)=cos^(-1) sqrt(x-1)` holds for all real x.True or False

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the equation \( \sin^{-1}(\sqrt{2 - x}) = \cos^{-1}(\sqrt{x - 1}) \) holds for all real \( x \), we will analyze both sides of the equation step by step. ### Step 1: Define the Variables Let: - \( \alpha = \sin^{-1}(\sqrt{2 - x}) \) - \( \beta = \cos^{-1}(\sqrt{x - 1}) \) ### Step 2: Square Both Sides From the definition of the inverse functions, we can write: - \( \sin(\alpha) = \sqrt{2 - x} \) - \( \cos(\beta) = \sqrt{x - 1} \) ### Step 3: Express \( x \) in Terms of \( \alpha \) and \( \beta \) Squaring both sides gives us: 1. From \( \sin(\alpha) = \sqrt{2 - x} \): \[ \sin^2(\alpha) = 2 - x \implies x = 2 - \sin^2(\alpha) \] 2. From \( \cos(\beta) = \sqrt{x - 1} \): \[ \cos^2(\beta) = x - 1 \implies x = 1 + \cos^2(\beta) \] ### Step 4: Set the Two Expressions for \( x \) Equal Equating the two expressions for \( x \): \[ 2 - \sin^2(\alpha) = 1 + \cos^2(\beta) \] ### Step 5: Use the Pythagorean Identity Using the identity \( \sin^2(\alpha) + \cos^2(\alpha) = 1 \), we can express \( \cos^2(\beta) \) as: \[ \cos^2(\beta) = 1 - \sin^2(\beta) \] Thus, we can rewrite the equation: \[ 2 - \sin^2(\alpha) = 1 + (1 - \sin^2(\beta)) \] This simplifies to: \[ 2 - \sin^2(\alpha) = 2 - \sin^2(\beta) \] ### Step 6: Conclude the Relationship From the above, we have: \[ \sin^2(\alpha) = \sin^2(\beta) \] This implies: \[ \alpha = \beta \quad \text{or} \quad \alpha = \pi - \beta \] ### Step 7: Determine the Validity of the Original Statement Since \( \alpha = \sin^{-1}(\sqrt{2 - x}) \) and \( \beta = \cos^{-1}(\sqrt{x - 1}) \), we need to check the domains of both sides: 1. For \( \sin^{-1}(\sqrt{2 - x}) \) to be valid, \( \sqrt{2 - x} \) must be in the range \([-1, 1]\), which implies: \[ 0 \leq 2 - x \leq 1 \implies 1 \leq x \leq 2 \] 2. For \( \cos^{-1}(\sqrt{x - 1}) \) to be valid, \( \sqrt{x - 1} \) must also be in the range \([0, 1]\), leading to: \[ 0 \leq x - 1 \leq 1 \implies 1 \leq x \leq 2 \] ### Conclusion Both expressions are equal only for \( x \) in the interval \([1, 2]\). Therefore, the statement \( \sin^{-1}(\sqrt{2 - x}) = \cos^{-1}(\sqrt{x - 1}) \) does not hold for all real \( x \). Thus, the answer is **False**. ---
Promotional Banner

Topper's Solved these Questions

  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (4)(MULTIPLE CHOICE QUESTIONS)|4 Videos
  • INVERSE CIRCULAR FUNCTIONS

    ML KHANNA|Exercise Problem Set (3)(MULTIPLE CHOICE QUESTIONS)|36 Videos
  • INTEGRATION

    ML KHANNA|Exercise SELF ASSESSMENT TESET|10 Videos
  • LIMITS, CONTINUITY AND DIFFERENTIABILITY

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/ REASONS) |3 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

sin^(-1)x=cos^(-1)sqrt(1-x^(2))

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

The equation 2 cos^(-1)x=sin^(-1)(2x sqrt(1-x^(2))) is valid for all values of x satisfying

The inequality 2^(sin theta)+2^(cos theta)>=2^(1-(1)/(sqrt(2))), holds for all real values of theta

Ify=2sin^(-1)sqrt(1-x)+sin^(-1)[2sqrt(x(1-x))] is real,then (dy)/(dx)=

(1) / (2) cos ^ (- 1) x = sin ^ (- 1) sqrt ((1-x) / (2)) = cos ^ (- 1) sqrt ((1 + x) / (2 )) = (tan ^ (- 1) (sqrt (1-x ^ (2)))) / (1 + x)