Home
Class 12
MATHS
(b + c) cos A +(c + a) cos B+(a+b) cos C...

`(b + c) cos A +(c + a) cos B+(a+b) cos C=`

A

`b+c-a`

B

`c+a-b`

C

`a+b-c`

D

`a+b+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((b + c) \cos A + (c + a) \cos B + (a + b) \cos C\), we will break it down step by step. ### Step 1: Expand the Expression Start by expanding the expression: \[ (b + c) \cos A + (c + a) \cos B + (a + b) \cos C \] This can be rewritten as: \[ b \cos A + c \cos A + c \cos B + a \cos B + a \cos C + b \cos C \] ### Step 2: Group the Terms Now, group the terms based on the cosine functions: \[ (b \cos A + c \cos A) + (c \cos B + a \cos B) + (a \cos C + b \cos C) \] This simplifies to: \[ (b + c) \cos A + (c + a) \cos B + (a + b) \cos C \] ### Step 3: Factor Out Common Terms Next, we can factor out the common terms: \[ \cos A (b + c) + \cos B (c + a) + \cos C (a + b) \] ### Step 4: Use the Cosine Rule Using the cosine rule in triangles, we know that: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc}, \quad \cos B = \frac{a^2 + c^2 - b^2}{2ac}, \quad \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Substituting these values into the expression gives us: \[ (b + c) \left(\frac{b^2 + c^2 - a^2}{2bc}\right) + (c + a) \left(\frac{a^2 + c^2 - b^2}{2ac}\right) + (a + b) \left(\frac{a^2 + b^2 - c^2}{2ab}\right) \] ### Step 5: Simplify the Expression Now, we simplify the entire expression. This can get quite complex, but the key is to combine like terms and simplify fractions. ### Final Result After simplification, we will arrive at the final result: \[ \frac{1}{2} \left( a^2 + b^2 + c^2 \right) \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

(a + b + c) (cos A + cos B + cos C)

Prove that (cos C + cos A)/(c + a) + (cos B)/(b) = (1)/(b)

In any Delta ABC, prove that : (cos A)/(b cos C+c cos B)+(cos B)/(c cos A+a cos C)+(cos C)/(c cos B+b cos A)=(a^(2)+b^(2)+c^(2))/(2abc)

In a Delta ABC if (cos A)/(b cos C+c cos B)+(cos B)/(c cos A+a cos C)+(cos C)/(a cos B+b cos A)=(a^(2)+b^(2)+c^(2))/(Kabc) then K^(k) is equal to

In any Delta ABC, prove that: (cos A)/(b cos C+c cos B)+(cos B)/(c cos A+a cos C)+(cos C)/(a cos B+b cos A)=(a^(2)+b^(2)+c^(2))/(2abc)

In any DeltaABC , a cos A +b cos B + c cos C =

(c-b cos A)/(b-c cos A)=(cos B)/(cos C)

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. The sides of a triangle are a,b and sqrt(a^(2)+b^(2)+ab) then the grea...

    Text Solution

    |

  2. The sides of the triangle are sinalpha , cosalpha and sqrt(1+sinalphac...

    Text Solution

    |

  3. (b + c) cos A +(c + a) cos B+(a+b) cos C=

    Text Solution

    |

  4. In a triangle Sigma(b + c) cos A=3 root3(abc), then the triangle is

    Text Solution

    |

  5. (a+b+c) (cos A+cos B+cos C) =

    Text Solution

    |

  6. In a triangle ABC, A = 8, b = 10 and c = 12. What is the angle C equal...

    Text Solution

    |

  7. In a Delta ABC, a,b,A are given and c(1), c(2) are two valus of the t...

    Text Solution

    |

  8. In a triangle ABC, a= 4, b = 3, angleA= 60°. Then, c is the root of th...

    Text Solution

    |

  9. If in a triangle ABC angle B=60^@ then

    Text Solution

    |

  10. If, in a Delta ABC, b^(2) + c^(2) = 3a^(2), then : cot B + cot C - c...

    Text Solution

    |

  11. If the sides a triangle are in the ratio 2:sqrt6:(sqrt3 + 1), then the...

    Text Solution

    |

  12. The sides of a triangle are in the ratio 2:sqrt6:sqrt3+1, then its ang...

    Text Solution

    |

  13. The sides of a triangle are in the ratio 1:sqrt3:2 then the angles of ...

    Text Solution

    |

  14. The sides a,b,c of a triangle ABC are the roots of x^3 - 11x^2 +38x - ...

    Text Solution

    |

  15. If x, y gt 0, then prove that the triangle whose sides are given by 3x...

    Text Solution

    |

  16. In triangleABC, if a^(2)+c^(2)-b^(2)=ac, then angleB=

    Text Solution

    |

  17. If the angles A, B, C of the triangle ABC be in A.P., then (a+c)/(sqrt...

    Text Solution

    |

  18. In a !ABC , if 1/(b+c)+1/(c+a)=3/(a+b+c), then angleC=

    Text Solution

    |

  19. If cos A= (sinB)/(2 sinC), " then " Delta ABC is

    Text Solution

    |

  20. In a triangle ABC, (asinB+bsinA)/(sqrt(sinAsinB))=4, angleC=pi/3 " the...

    Text Solution

    |