Home
Class 12
MATHS
(a+b+c) (cos A+cos B+cos C) =...

`(a+b+c) (cos A+cos B+cos C) =`

A

`Sigma a sin^2 " A/2`

B

`Sigma a cos^2 " A/2`

C

`2Sigma a sin^2 " A/2`

D

`2Sigma a cos^2 " A/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((a+b+c)(\cos A + \cos B + \cos C)\), we will follow a systematic approach: ### Step 1: Expand the Expression We start by distributing the terms in the expression: \[ (a+b+c)(\cos A + \cos B + \cos C) = a\cos A + a\cos B + a\cos C + b\cos A + b\cos B + b\cos C + c\cos A + c\cos B + c\cos C \] ### Step 2: Group the Terms Now, we can group the terms based on the coefficients: \[ = a\cos A + b\cos A + c\cos A + a\cos B + b\cos B + c\cos B + a\cos C + b\cos C + c\cos C \] This can be rearranged as: \[ = (a+b+c)\cos A + (a+b+c)\cos B + (a+b+c)\cos C \] ### Step 3: Factor Out Common Terms Notice that we can factor out \((a+b+c)\): \[ = (a+b+c)(\cos A + \cos B + \cos C) \] ### Step 4: Use the Projection Formula Using the projection formula, we can express the terms in a different way. The projection of side lengths onto the angles gives us: \[ = \frac{1}{2}(a(\cos A + \cos B + \cos C) + b(\cos A + \cos B + \cos C) + c(\cos A + \cos B + \cos C)) \] This leads us to: \[ = \frac{1}{2}(a + b + c)(\cos A + \cos B + \cos C) \] ### Step 5: Final Result Thus, we conclude that: \[ (a+b+c)(\cos A + \cos B + \cos C) = \frac{1}{2}(a + b + c)(\cos A + \cos B + \cos C) \] ### Final Answer The final value of \((a+b+c)(\cos A + \cos B + \cos C)\) is: \[ \frac{1}{2}(a + b + c)(\cos A + \cos B + \cos C) \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If A+B+C=180^(@) , then (cos2A+cos2B+cos2C+1)/(cos A cos B cos C)

Prove that : (sin 2A+sin 2B + sin 2C)/(cos A + cos B + cos C-1) = 8 cos(A/2) cos( B/2) cos( C/2)

If : A+B+C=pi, "then" : 1-cos^(2) A-cos^(2)B-cos^(2)C= A) 2 cos A * cos B * cos C B) 2 sin A * cos B * cos C C) 2 cos A * sin B * cos C D) 2 cos A * cos B * sin C

sin A + sin B + sin C = cos A + cos B + cos C = 0then (A) cos (AB) = - (1) / (2) (B) sin ^ (2) A + sin ^ (2) B + sin ^ (2) C = 0 (C) sin ^ (2) A + sin ^ (2) B + sin ^ (2) C = (3) / (2) (D) cos ^ (2) A + cos ^ (2) B + cos ^ (2) C = (3) / (2)

In any DeltaABC , a cos A +b cos B + c cos C =

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. (b + c) cos A +(c + a) cos B+(a+b) cos C=

    Text Solution

    |

  2. In a triangle Sigma(b + c) cos A=3 root3(abc), then the triangle is

    Text Solution

    |

  3. (a+b+c) (cos A+cos B+cos C) =

    Text Solution

    |

  4. In a triangle ABC, A = 8, b = 10 and c = 12. What is the angle C equal...

    Text Solution

    |

  5. In a Delta ABC, a,b,A are given and c(1), c(2) are two valus of the t...

    Text Solution

    |

  6. In a triangle ABC, a= 4, b = 3, angleA= 60°. Then, c is the root of th...

    Text Solution

    |

  7. If in a triangle ABC angle B=60^@ then

    Text Solution

    |

  8. If, in a Delta ABC, b^(2) + c^(2) = 3a^(2), then : cot B + cot C - c...

    Text Solution

    |

  9. If the sides a triangle are in the ratio 2:sqrt6:(sqrt3 + 1), then the...

    Text Solution

    |

  10. The sides of a triangle are in the ratio 2:sqrt6:sqrt3+1, then its ang...

    Text Solution

    |

  11. The sides of a triangle are in the ratio 1:sqrt3:2 then the angles of ...

    Text Solution

    |

  12. The sides a,b,c of a triangle ABC are the roots of x^3 - 11x^2 +38x - ...

    Text Solution

    |

  13. If x, y gt 0, then prove that the triangle whose sides are given by 3x...

    Text Solution

    |

  14. In triangleABC, if a^(2)+c^(2)-b^(2)=ac, then angleB=

    Text Solution

    |

  15. If the angles A, B, C of the triangle ABC be in A.P., then (a+c)/(sqrt...

    Text Solution

    |

  16. In a !ABC , if 1/(b+c)+1/(c+a)=3/(a+b+c), then angleC=

    Text Solution

    |

  17. If cos A= (sinB)/(2 sinC), " then " Delta ABC is

    Text Solution

    |

  18. In a triangle ABC, (asinB+bsinA)/(sqrt(sinAsinB))=4, angleC=pi/3 " the...

    Text Solution

    |

  19. In a triangle, the lengths of the two larger sides are 10 and 9, re...

    Text Solution

    |

  20. With usual notations, if in a triangle ABC (b+c)/(11) = (c+a)/(12) = ...

    Text Solution

    |