Home
Class 12
MATHS
The sides a,b,c of a triangle ABC are th...

The sides a,b,c of a triangle ABC are the roots of `x^3 - 11x^2 +38x - 40 =0, " then " Sigma(cos A)/a =`

A

`3/4`

B

1

C

`9/16`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \Sigma \left( \frac{\cos A}{a} \right) \) where \( a, b, c \) are the roots of the polynomial equation \( x^3 - 11x^2 + 38x - 40 = 0 \). ### Step-by-Step Solution: 1. **Identify the coefficients of the polynomial**: The polynomial is given as \( x^3 - 11x^2 + 38x - 40 = 0 \). From Vieta's formulas, we can extract the following: - \( a + b + c = 11 \) (coefficient of \( x^2 \) with a negative sign) - \( ab + bc + ca = 38 \) (coefficient of \( x \)) - \( abc = 40 \) (constant term with a negative sign) 2. **Use the cosine rule**: We know that: \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Similarly, we can express \( \cos B \) and \( \cos C \): \[ \cos B = \frac{a^2 + c^2 - b^2}{2ac} \] \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] 3. **Set up the summation**: Now we can write: \[ \Sigma \left( \frac{\cos A}{a} \right) = \frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c} \] Substituting the expressions for \( \cos A, \cos B, \cos C \): \[ \Sigma \left( \frac{\cos A}{a} \right) = \frac{b^2 + c^2 - a^2}{2abc} + \frac{a^2 + c^2 - b^2}{2abc} + \frac{a^2 + b^2 - c^2}{2abc} \] 4. **Combine the terms**: Combine the terms in the numerator: \[ = \frac{(b^2 + c^2 - a^2) + (a^2 + c^2 - b^2) + (a^2 + b^2 - c^2)}{2abc} \] Simplifying the numerator: \[ = \frac{2a^2 + 2b^2 + 2c^2}{2abc} = \frac{a^2 + b^2 + c^2}{abc} \] 5. **Calculate \( a^2 + b^2 + c^2 \)**: We know from the identity: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + ac + bc) \] Substituting the known values: \[ 11^2 = a^2 + b^2 + c^2 + 2 \cdot 38 \] \[ 121 = a^2 + b^2 + c^2 + 76 \] \[ a^2 + b^2 + c^2 = 121 - 76 = 45 \] 6. **Substitute back into the summation**: Now substituting \( a^2 + b^2 + c^2 \) and \( abc \): \[ \Sigma \left( \frac{\cos A}{a} \right) = \frac{45}{40} = \frac{9}{8} \] ### Final Answer: Thus, the value of \( \Sigma \left( \frac{\cos A}{a} \right) \) is \( \frac{9}{8} \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If the sides a, b, c of a triangle ABC are the roots of the equation x^(3)-13x^(2)+54x-72=0 , then the value of (cosA)/(a)+(cosB)/(b)+(cosC)/(c ) is equal to :

If in a triangle ABC a,b,are roots of the equation x^(3)-11x^(2)+38x-40=0 then sum(cos A)/(a) equal to:

In a Delta ABC, the side a, b, and c are such that they are roots of x^(3) -11x ^(2) +38x -40=0. Then the value of (cos A)/(a )+ (cos B)/(b)+ (cos C)/(c ).

In a DeltaABC , if the sides a, b, c are the roots of the equation x^(3)-11x^(2)+38x-40=0 , then (cosA)/a+(cosB)/b+(cosC)/c=

In a triangle ABC, if the sides a,b,c, are roots of x^3-11 x^2+38 x-40=0, then find the value of (cosA)/a+(cosB)/b+(cosC)/c

If the sides of the triangle are the roots of the equation x^(3)-2x^(2)-x-16 =0, then the product of the in-radius and circum-radius of the triangle ,is

If a, b,c be the sides foi a triangle ABC and if roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=0 are equal then sin^2 A/2, sin^2, B/2, sin^2 C/2 are in (A) A.P. (B) G.P. (C) H.P. (D) none of these

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. The sides of a triangle are in the ratio 2:sqrt6:sqrt3+1, then its ang...

    Text Solution

    |

  2. The sides of a triangle are in the ratio 1:sqrt3:2 then the angles of ...

    Text Solution

    |

  3. The sides a,b,c of a triangle ABC are the roots of x^3 - 11x^2 +38x - ...

    Text Solution

    |

  4. If x, y gt 0, then prove that the triangle whose sides are given by 3x...

    Text Solution

    |

  5. In triangleABC, if a^(2)+c^(2)-b^(2)=ac, then angleB=

    Text Solution

    |

  6. If the angles A, B, C of the triangle ABC be in A.P., then (a+c)/(sqrt...

    Text Solution

    |

  7. In a !ABC , if 1/(b+c)+1/(c+a)=3/(a+b+c), then angleC=

    Text Solution

    |

  8. If cos A= (sinB)/(2 sinC), " then " Delta ABC is

    Text Solution

    |

  9. In a triangle ABC, (asinB+bsinA)/(sqrt(sinAsinB))=4, angleC=pi/3 " the...

    Text Solution

    |

  10. In a triangle, the lengths of the two larger sides are 10 and 9, re...

    Text Solution

    |

  11. With usual notations, if in a triangle ABC (b+c)/(11) = (c+a)/(12) = ...

    Text Solution

    |

  12. In a triangle ABC, a^4 +b^4 +c^4 = 2(a^2 +c^2)b^2 then the angle B is

    Text Solution

    |

  13. In a triangle ABC ,a^2 cos^2 A=b^2+c^2, then

    Text Solution

    |

  14. If in a triangle sin^4 A+sin^4 B + sin^4 C = sin^2 B sin^2 C+2 sin^2 C...

    Text Solution

    |

  15. If A=60^@, " then " b/(c+a)+c/(a+b) =

    Text Solution

    |

  16. The sides of a triangle are three consecutive natural numbers and its ...

    Text Solution

    |

  17. If D id the mid-point of the side BC of a triangle ABC and AD is perpe...

    Text Solution

    |

  18. Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A

    Text Solution

    |

  19. Let 'l' is the length of median from the vertex A to the side BC of a ...

    Text Solution

    |

  20. If a triangle ABC, D is the mid point of side BC and angleADB =theta "...

    Text Solution

    |