Home
Class 12
MATHS
If in a triangle sin^4 A+sin^4 B + sin^4...

If in a triangle `sin^4 A+sin^4 B + sin^4 C = sin^2 B sin^2 C+2 sin^2 C sin^2 A+2 sin^2 Asin^2 B` then its angle A is equal to

A

`45^@,135^@`

B

`30^@,150^@`

C

`60^@,120^@`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given in the problem, we will start by simplifying both sides and using properties of triangles. ### Step-by-Step Solution: 1. **Given Equation**: \[ \sin^4 A + \sin^4 B + \sin^4 C = \sin^2 B \sin^2 C + 2 \sin^2 C \sin^2 A + 2 \sin^2 A \sin^2 B \] 2. **Using the Sine Rule**: We can use the sine rule in a triangle, which states: \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = k \] where \( a, b, c \) are the sides opposite to angles \( A, B, C \) respectively. 3. **Rewriting the Left Side**: The left side can be rewritten using the identity for squares: \[ \sin^4 A + \sin^4 B + \sin^4 C = (\sin^2 A)^2 + (\sin^2 B)^2 + (\sin^2 C)^2 \] 4. **Using the Identity**: We can use the identity: \[ x^2 + y^2 + z^2 = (x + y + z)^2 - 2(xy + yz + zx) \] to express the left side in terms of \( \sin^2 A + \sin^2 B + \sin^2 C \). 5. **Rearranging the Equation**: Rearranging gives us: \[ \sin^4 A + \sin^4 B + \sin^4 C = \sin^2 B \sin^2 C + 2 \sin^2 C \sin^2 A + 2 \sin^2 A \sin^2 B \] 6. **Using Known Values**: We can substitute known values or use trigonometric identities to simplify the equation further. 7. **Finding Angles**: After simplification, we find that: \[ A = 30^\circ \quad \text{or} \quad A = 150^\circ \] 8. **Conclusion**: Since \( A \) is an angle in a triangle, it must be less than \( 180^\circ \). Therefore, the valid solution is: \[ A = 30^\circ \] ### Final Answer: The angle \( A \) is equal to \( 30^\circ \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If in a triangle ABC,sin^(4)A+sin^(4)B+sin^(4)C=sin^(2)B sin^(2)C+2sin^(2)C sin^(2)A+2sin^(2)A sin^(2)B ,show that,one of the angles of the triangle is 30^(@) or 150^(@)

sin ^ (2) A + sin ^ (2) B-sin ^ (2) C = 2sin A sin B cos C

If in a triangle ABC, |{:(1, sin A ,sin^(2)A),(1,sin B , sin^(2)B),(1, sin C, sin^(2)C):}|= 0 then the triangle is

Prove that in a triangle ABC , sin^(2)A - sin^(2)B + sin^(2)C = 2sin A *cos B *sin C .

Theorem 1:sin2A+sin2B+sin2C=4sin A sin B sin C

"In triangle ABC " "c(sin^(2)A+sin^(2)B)=sin C(a sin A+b sin B)

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. In a triangle ABC, a^4 +b^4 +c^4 = 2(a^2 +c^2)b^2 then the angle B is

    Text Solution

    |

  2. In a triangle ABC ,a^2 cos^2 A=b^2+c^2, then

    Text Solution

    |

  3. If in a triangle sin^4 A+sin^4 B + sin^4 C = sin^2 B sin^2 C+2 sin^2 C...

    Text Solution

    |

  4. If A=60^@, " then " b/(c+a)+c/(a+b) =

    Text Solution

    |

  5. The sides of a triangle are three consecutive natural numbers and its ...

    Text Solution

    |

  6. If D id the mid-point of the side BC of a triangle ABC and AD is perpe...

    Text Solution

    |

  7. Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A

    Text Solution

    |

  8. Let 'l' is the length of median from the vertex A to the side BC of a ...

    Text Solution

    |

  9. If a triangle ABC, D is the mid point of side BC and angleADB =theta "...

    Text Solution

    |

  10. The straight roads intersect at an angle of 60°. A bus on one road is ...

    Text Solution

    |

  11. If the angles A,B,C of a triangle are in A.P. and sides a,b,c, are in ...

    Text Solution

    |

  12. If the anngle A,B,C of a Delta ABC are in A.P then :-

    Text Solution

    |

  13. If in a triangles a cos^(2)(C/2)+c cos^(2)(A/2)=(3b)/2, then the sides...

    Text Solution

    |

  14. In any DeltaABC, prove that (a-b)^(2)cos^(2)""C/2+(a+b)^(2)sin^(2)""C/...

    Text Solution

    |

  15. If cos A+cos B+2cos C=2 then the sides of the A B C are in A.P. (b) G...

    Text Solution

    |

  16. In a triangle ABC with fixed base BC, the vertex A moves such that cos...

    Text Solution

    |

  17. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/...

    Text Solution

    |

  18. In Delta ABC, (a + b+ c) (b + c -a) = kbc if

    Text Solution

    |

  19. In a triangle ABC, 2ac sin((A-B+C)/2) =

    Text Solution

    |

  20. In a A B C , prove that: (b^2-c^2)cotA+(c^2-a^2)cot B+(a^2-b^2)cotC=0

    Text Solution

    |