Home
Class 12
MATHS
If A=60^@, " then " b/(c+a)+c/(a+b) =...

If `A=60^@, " then " b/(c+a)+c/(a+b) =`

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{b}{c+a} + \frac{c}{a+b} \) given that \( A = 60^\circ \). ### Step 1: Use the Law of Cosines We can use the Law of Cosines to relate the sides of the triangle to the angles. The Law of Cosines states that: \[ A^2 = B^2 + C^2 - 2BC \cos A \] Given \( A = 60^\circ \), we know that \( \cos 60^\circ = \frac{1}{2} \). Thus, we can rewrite the equation as: \[ A^2 = B^2 + C^2 - BC \] ### Step 2: Rearranging the Equation Rearranging the equation gives us: \[ A^2 + BC = B^2 + C^2 \] ### Step 3: Find \( \frac{b}{c+a} + \frac{c}{a+b} \) Now, we need to find \( \frac{b}{c+a} + \frac{c}{a+b} \). We can combine these fractions: \[ \frac{b}{c+a} + \frac{c}{a+b} = \frac{b(a+b) + c(c+a)}{(c+a)(a+b)} \] ### Step 4: Simplifying the Numerator Expanding the numerator: \[ b(a+b) + c(c+a) = ab + b^2 + c^2 + ac \] So we have: \[ \frac{ab + b^2 + c^2 + ac}{(c+a)(a+b)} \] ### Step 5: Substitute \( A^2 \) From our earlier rearrangement, we know that \( b^2 + c^2 = A^2 + BC \). Substituting this into our expression gives: \[ \frac{ab + A^2 + BC + ac}{(c+a)(a+b)} \] ### Step 6: Final Expression We can simplify this further, but we need to evaluate it based on the values of \( a, b, c \) and \( A \). However, without specific values for \( a, b, c \), we can conclude that: \[ \frac{b}{c+a} + \frac{c}{a+b} = \frac{ab + A^2 + BC + ac}{(c+a)(a+b)} \] ### Final Answer Thus, the expression \( \frac{b}{c+a} + \frac{c}{a+b} \) simplifies to the above fraction, depending on the values of \( a, b, c \). ---
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In a triangleABC," if "C=60^(@)," then "(a)/(b+c)+(b)/(c+a)=

In a triangleABC"if "angle C=60^(@)"then "(a)/(b+c)+(b)/(c+a)=

If mangleA = 60^(@) , then (a+b+c)(-a+b+c)= ….

If, in a triangleABC, A=60^(@) , then: (1+a/c + b/c)(1+c/b - a/b)=

In a Delta ABC, If A=60^(@), then the value of (1+(a)/(c)+(b)/(c))(a+(c)/(b)+(a)/(b))=

If a+b+c= 0 , then ((a+b)/(c ) + (b+c)/(a) + (c+ a)/(b)) ((c )/(a+b) + (b)/(a+c) + (a)/(b+c)) = ?

If in a triangle ABC/_B=60^(@), then (A) (a-b)^(2)=c^(2)-ab(B)(b-c)^(2)=a^(2)-bc(C)(c-a)^(2)=b^(2)-ac(D)a^(2)+b^(2)+c^(2)=2b^(2)+ac^(2)

If C=60^(@). then prove that (1)/(a+c)+(1)/(b+c)=(3)/(a+b+c)

In a DeltaABC,angleC=60^(@) , then (1)/(a+b)+(1)/(b+c) is equal to

In a parallelogram A B C D , if /_D A B=75^0a n d\ /_D B C=60^0, then /_B D C= (a) 75^0 (b) 60^0 (c) 45^0 (d) 55^0

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. In a triangle ABC ,a^2 cos^2 A=b^2+c^2, then

    Text Solution

    |

  2. If in a triangle sin^4 A+sin^4 B + sin^4 C = sin^2 B sin^2 C+2 sin^2 C...

    Text Solution

    |

  3. If A=60^@, " then " b/(c+a)+c/(a+b) =

    Text Solution

    |

  4. The sides of a triangle are three consecutive natural numbers and its ...

    Text Solution

    |

  5. If D id the mid-point of the side BC of a triangle ABC and AD is perpe...

    Text Solution

    |

  6. Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A

    Text Solution

    |

  7. Let 'l' is the length of median from the vertex A to the side BC of a ...

    Text Solution

    |

  8. If a triangle ABC, D is the mid point of side BC and angleADB =theta "...

    Text Solution

    |

  9. The straight roads intersect at an angle of 60°. A bus on one road is ...

    Text Solution

    |

  10. If the angles A,B,C of a triangle are in A.P. and sides a,b,c, are in ...

    Text Solution

    |

  11. If the anngle A,B,C of a Delta ABC are in A.P then :-

    Text Solution

    |

  12. If in a triangles a cos^(2)(C/2)+c cos^(2)(A/2)=(3b)/2, then the sides...

    Text Solution

    |

  13. In any DeltaABC, prove that (a-b)^(2)cos^(2)""C/2+(a+b)^(2)sin^(2)""C/...

    Text Solution

    |

  14. If cos A+cos B+2cos C=2 then the sides of the A B C are in A.P. (b) G...

    Text Solution

    |

  15. In a triangle ABC with fixed base BC, the vertex A moves such that cos...

    Text Solution

    |

  16. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/...

    Text Solution

    |

  17. In Delta ABC, (a + b+ c) (b + c -a) = kbc if

    Text Solution

    |

  18. In a triangle ABC, 2ac sin((A-B+C)/2) =

    Text Solution

    |

  19. In a A B C , prove that: (b^2-c^2)cotA+(c^2-a^2)cot B+(a^2-b^2)cotC=0

    Text Solution

    |

  20. In any DeltaABC, prove that ((b^(2)-c^(2)))/a^(2)"sin 2a"+((c^(2)-a^(2...

    Text Solution

    |