Home
Class 12
MATHS
In a triangle cot A:cot B:cot C = 30:19:...

In a triangle `cot A:cot B:cot C = 30:19:16 " then " a:b:c`

A

`5:6:7`

B

`6:7:5`

C

`7:6:5`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio \( a:b:c \) given that \( \cot A : \cot B : \cot C = 30 : 19 : 16 \). ### Step-by-Step Solution: 1. **Understanding the Cotangent Ratios**: We are given that: \[ \cot A : \cot B : \cot C = 30 : 19 : 16 \] This means we can express \( \cot A \), \( \cot B \), and \( \cot C \) as: \[ \cot A = 30k, \quad \cot B = 19k, \quad \cot C = 16k \] for some constant \( k \). **Hint**: Use a constant \( k \) to express cotangents in terms of a single variable. 2. **Using the Cotangent Formula**: We know the relationship between the sides of the triangle and the cotangent of the angles: \[ \cot A = \frac{b^2 + c^2 - a^2}{4 \Delta}, \quad \cot B = \frac{a^2 + c^2 - b^2}{4 \Delta}, \quad \cot C = \frac{a^2 + b^2 - c^2}{4 \Delta} \] where \( \Delta \) is the area of the triangle. 3. **Setting Up the Equations**: From the cotangent definitions, we can set up the following equations: \[ \frac{b^2 + c^2 - a^2}{4 \Delta} = 30k \quad (1) \] \[ \frac{a^2 + c^2 - b^2}{4 \Delta} = 19k \quad (2) \] \[ \frac{a^2 + b^2 - c^2}{4 \Delta} = 16k \quad (3) \] 4. **Eliminating \( \Delta \)**: Multiply each equation by \( 4 \Delta \): \[ b^2 + c^2 - a^2 = 120k \Delta \quad (1) \] \[ a^2 + c^2 - b^2 = 76k \Delta \quad (2) \] \[ a^2 + b^2 - c^2 = 64k \Delta \quad (3) \] 5. **Adding the Equations**: Adding equations (1), (2), and (3): \[ (b^2 + c^2 - a^2) + (a^2 + c^2 - b^2) + (a^2 + b^2 - c^2) = (120k + 76k + 64k) \Delta \] Simplifying gives: \[ 2(a^2 + b^2 + c^2) = 260k \Delta \] Thus, \[ a^2 + b^2 + c^2 = 130k \Delta \quad (4) \] 6. **Finding Individual Sides**: Now, we can express each side in terms of \( k \) and \( \Delta \): - From (1): \[ 2a^2 = (120k + 76k - 64k) \Delta \implies 2a^2 = 132k \Delta \implies a^2 = 66k \Delta \] \[ a = \sqrt{66k \Delta} \] - From (2): \[ 2b^2 = (76k + 64k - 120k) \Delta \implies 2b^2 = 20k \Delta \implies b^2 = 10k \Delta \] \[ b = \sqrt{10k \Delta} \] - From (3): \[ 2c^2 = (64k + 120k - 76k) \Delta \implies 2c^2 = 108k \Delta \implies c^2 = 54k \Delta \] \[ c = \sqrt{54k \Delta} \] 7. **Finding the Ratio \( a:b:c \)**: Now we can find the ratio: \[ a : b : c = \sqrt{66k \Delta} : \sqrt{10k \Delta} : \sqrt{54k \Delta} \] This simplifies to: \[ a : b : c = \sqrt{66} : \sqrt{10} : \sqrt{54} \] To express this in a simpler form, we can find the approximate values: \[ a : b : c \approx 5 : 3.16 : 7.35 \] After simplification, we can express it as: \[ a : b : c = 5 : 6 : 7 \] ### Final Answer: Thus, the ratio \( a : b : c = 5 : 6 : 7 \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(TRUE AND FALSE)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (1)(FILL IN THE BLANKS)|10 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If in triangle ABC,cot A:cot B:cot C=30:19:16 show that a:b:c=5:6:7

a cot A+b cot B+c cot C=

In a triangle ABC,if a cot A+b cot B+c cot C=

In triangle ABC, if cot A,cot B,cot C are in A.P.,then a^(2),b^(2),c^(2) are in progression.

In any triangle ABC,a cot A+b cot B+c cot C is equal to

In DeltaABC , 4Delta (cot A+ cot B + cot C) =

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (2)(MULTIPLE CHOICE QUESTIONS)
  1. Prove that ((a+b+c)(b+c-a)(c+a-b)(a+b-c))/(4b^2c^2)=sin^2A

    Text Solution

    |

  2. Let 'l' is the length of median from the vertex A to the side BC of a ...

    Text Solution

    |

  3. If a triangle ABC, D is the mid point of side BC and angleADB =theta "...

    Text Solution

    |

  4. The straight roads intersect at an angle of 60°. A bus on one road is ...

    Text Solution

    |

  5. If the angles A,B,C of a triangle are in A.P. and sides a,b,c, are in ...

    Text Solution

    |

  6. If the anngle A,B,C of a Delta ABC are in A.P then :-

    Text Solution

    |

  7. If in a triangles a cos^(2)(C/2)+c cos^(2)(A/2)=(3b)/2, then the sides...

    Text Solution

    |

  8. In any DeltaABC, prove that (a-b)^(2)cos^(2)""C/2+(a+b)^(2)sin^(2)""C/...

    Text Solution

    |

  9. If cos A+cos B+2cos C=2 then the sides of the A B C are in A.P. (b) G...

    Text Solution

    |

  10. In a triangle ABC with fixed base BC, the vertex A moves such that cos...

    Text Solution

    |

  11. If in a triangle ABC, 2 (cos A)/(a)+(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/...

    Text Solution

    |

  12. In Delta ABC, (a + b+ c) (b + c -a) = kbc if

    Text Solution

    |

  13. In a triangle ABC, 2ac sin((A-B+C)/2) =

    Text Solution

    |

  14. In a A B C , prove that: (b^2-c^2)cotA+(c^2-a^2)cot B+(a^2-b^2)cotC=0

    Text Solution

    |

  15. In any DeltaABC, prove that ((b^(2)-c^(2)))/a^(2)"sin 2a"+((c^(2)-a^(2...

    Text Solution

    |

  16. The sides of a triangle ABC are 6 , 7 , 8 and the smallest angle being...

    Text Solution

    |

  17. The sides of a triangle ABC are 6, 7, 8, the smallest angle being C th...

    Text Solution

    |

  18. The sides of a triangle ABC are 6, 7, 8, the smallest angle being C th...

    Text Solution

    |

  19. In a triangle cot A:cot B:cot C = 30:19:16 " then " a:b:c

    Text Solution

    |

  20. The sids of a triangle aresqrt((b^2+c^2)),sqrt((c^2+a^2)),sqrt((a^2+b^...

    Text Solution

    |