Home
Class 12
MATHS
If the sides of a triangle a,b,c be in A...

If the sides of a triangle a,b,c be in A.P., then `a cos^2 ""C/2 +c cos^2 ""A/2 =`

A

`(3a)/2`

B

`(3b)/2`

C

`(3c)/2`

D

`(Sigma a)/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if the sides of a triangle \( a, b, c \) are in Arithmetic Progression (A.P.), then the expression \( a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} \) simplifies to a certain value. ### Step-by-Step Solution: 1. **Understanding A.P. Condition**: Since \( a, b, c \) are in A.P., we have the relationship: \[ 2b = a + c \quad \text{(Equation 1)} \] 2. **Using the Cosine Half-Angle Formula**: The cosine half-angle formula states that: \[ \cos^2 \frac{C}{2} = \frac{a}{2s} \quad \text{and} \quad \cos^2 \frac{A}{2} = \frac{c}{2s} \] where \( s \) is the semi-perimeter of the triangle given by: \[ s = \frac{a + b + c}{2} \] 3. **Substituting the Semi-Perimeter**: From the A.P. condition, we can express \( s \) as: \[ s = \frac{a + b + c}{2} = \frac{a + (a+c)/2 + c}{2} = \frac{2b + b}{2} = \frac{3b}{2} \] 4. **Substituting Values into the Expression**: Now substituting \( s \) into the cosine half-angle formulas: \[ \cos^2 \frac{C}{2} = \frac{a}{2 \cdot \frac{3b}{2}} = \frac{a}{3b} \] \[ \cos^2 \frac{A}{2} = \frac{c}{2 \cdot \frac{3b}{2}} = \frac{c}{3b} \] 5. **Calculating the Required Expression**: Now substituting these values into the expression \( a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} \): \[ a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} = a \cdot \frac{a}{3b} + c \cdot \frac{c}{3b} \] \[ = \frac{a^2}{3b} + \frac{c^2}{3b} = \frac{a^2 + c^2}{3b} \] 6. **Using the A.P. Condition Again**: From Equation 1, we know \( a + c = 2b \). Therefore, we can express \( a^2 + c^2 \) using the identity: \[ a^2 + c^2 = (a + c)^2 - 2ac = (2b)^2 - 2ac = 4b^2 - 2ac \] 7. **Final Expression**: Thus, substituting back, we have: \[ a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} = \frac{4b^2 - 2ac}{3b} \] 8. **Simplifying Further**: Since \( a + c = 2b \), we can conclude that: \[ a \cos^2 \frac{C}{2} + c \cos^2 \frac{A}{2} = \frac{4b^2}{3b} - \frac{2ac}{3b} = \frac{4b}{3} - \frac{2ac}{3b} \] ### Conclusion: Thus, the final result is: \[ \boxed{\frac{4b}{3} - \frac{2ac}{3b}} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In in a triangle ABC , sides a,b,c are in A.P. then tan""A/2 tan""C/2

If in Delta ABC , sides a, b, c are in A.P. then

If sides a,b,c of the triangle ABC are in A.P,then prove that sin^(2)((A)/(2))cos ec2A;sin^(2)((B)/(2))cos ec2B;sin^(2)((c)/(2))cos ec2c are in H.P.

If in Delta ABC, reciprocals of the sides a,b,c are in A.P.prove that : cos ec^(2)(A)/(2),cos ec^(2)(B)/(2),cos ec^(2)(C)/(2) are in A.P.

If A,B,C are in A.P then (sin A-sin C)/(cos C-cos A)=

If cos A+cos C=2(1-cos B), then a,b,c are in A.P.

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. If the hypotenuse of a right-angled triangle is four times the length ...

    Text Solution

    |

  2. Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2...

    Text Solution

    |

  3. If the sides of a triangle a,b,c be in A.P., then a cos^2 ""C/2 +c cos...

    Text Solution

    |

  4. (b-c)/a cos^2 "" 1/2 A+ (c-a)/b cos^2 "" 1/2 B+(a-b)/c cos^2 ""1/2 C=

    Text Solution

    |

  5. 2 abc.cos ""A/2 cos "" B/2 ""cos""C/2=

    Text Solution

    |

  6. In a triangle ABC, abc s sin "" A/2 sin ""B/2 sin "" C/2=

    Text Solution

    |

  7. 1-tan""A/2.tan""B/2=

    Text Solution

    |

  8. If the sides of triangle a,b,c be is A.P. then tan""A/2+tan""C/2=

    Text Solution

    |

  9. If in a triangle ABC, S = a^2 - (b -c)^2 then tan A is equal to

    Text Solution

    |

  10. If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

    Text Solution

    |

  11. If in a triangle ABC cos A cos B+sin Asin B sin C = 1, then the sides ...

    Text Solution

    |

  12. If in a triangle ABC cos Acos B + sin A sin B sin C = 1, then the tria...

    Text Solution

    |

  13. If in a !ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area in squa...

    Text Solution

    |

  14. In a triangle ABC we define x = tan""(B-C)/2 tan""A/2, y=tan""(C-A)/2 ...

    Text Solution

    |

  15. In a triangle ABC if a =5,b= 4,cos (A - B) = 31/32, then the third sid...

    Text Solution

    |

  16. In a triangle cot A cot B cot C gt 0, then the triangle is

    Text Solution

    |

  17. If cos B cos C+sin B sin C sin^2 A = 1, then the triangle ABC is

    Text Solution

    |

  18. If cos A+ cos B+cos C = 3//2," then " DeltaABC is

    Text Solution

    |

  19. The two adjacent sides of a cyclic quadrilateral are 2a n d5 and the a...

    Text Solution

    |

  20. The two adjacent sides of a cyclic quadrilateral are 2 cm and 5 cm and...

    Text Solution

    |