Home
Class 12
MATHS
(b-c)/a cos^2 "" 1/2 A+ (c-a)/b cos^2 ""...

`(b-c)/a cos^2 "" 1/2 A+ (c-a)/b cos^2 "" 1/2 B+(a-b)/c cos^2 ""1/2 C=`

A

`(s-a)(s-b)`

B

`(s-b)(s-c)`

C

`(s-c)(s-a)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{b-c}{a} \cos^2 \frac{A}{2} + \frac{c-a}{b} \cos^2 \frac{B}{2} + \frac{a-b}{c} \cos^2 \frac{C}{2} = 0, \] we will analyze each term step by step. ### Step 1: Analyze the first term We start with the first term: \[ \frac{b-c}{a} \cos^2 \frac{A}{2}. \] Using the identity for cosine, we can express \(\cos^2 \frac{A}{2}\) in terms of sine: \[ \cos^2 \frac{A}{2} = \frac{1 + \cos A}{2}. \] Thus, we can rewrite the first term as: \[ \frac{b-c}{a} \cdot \frac{1 + \cos A}{2} = \frac{(b-c)(1 + \cos A)}{2a}. \] ### Step 2: Analyze the second term Now, we look at the second term: \[ \frac{c-a}{b} \cos^2 \frac{B}{2}. \] Similarly, we can rewrite this term using the cosine identity: \[ \cos^2 \frac{B}{2} = \frac{1 + \cos B}{2}. \] So, the second term becomes: \[ \frac{c-a}{b} \cdot \frac{1 + \cos B}{2} = \frac{(c-a)(1 + \cos B)}{2b}. \] ### Step 3: Analyze the third term Next, we analyze the third term: \[ \frac{a-b}{c} \cos^2 \frac{C}{2}. \] Using the same cosine identity, we rewrite it as: \[ \cos^2 \frac{C}{2} = \frac{1 + \cos C}{2}. \] Thus, the third term becomes: \[ \frac{a-b}{c} \cdot \frac{1 + \cos C}{2} = \frac{(a-b)(1 + \cos C)}{2c}. \] ### Step 4: Combine all terms Now we combine all three terms: \[ \frac{(b-c)(1 + \cos A)}{2a} + \frac{(c-a)(1 + \cos B)}{2b} + \frac{(a-b)(1 + \cos C)}{2c} = 0. \] ### Step 5: Simplify the expression To simplify, we can multiply through by \(2abc\) (the common denominator) to eliminate the fractions: \[ (b-c)(1 + \cos A)bc + (c-a)(1 + \cos B)ac + (a-b)(1 + \cos C)ab = 0. \] ### Step 6: Expand and collect like terms Expanding each term gives: 1. \( (b-c)bc + (b-c)bc \cos A \) 2. \( (c-a)ac + (c-a)ac \cos B \) 3. \( (a-b)ab + (a-b)ab \cos C \) Combining these results leads to: \[ (bc - ac) + (c-a)ac \cos B + (a-b)ab \cos C = 0. \] ### Step 7: Conclude After simplifying and rearranging, we find that all terms cancel out, leading to the conclusion that: \[ 0 = 0. \] Thus, the original equation holds true.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

(bc) / (a) cos ^ (2) ((A) / (2)) + (ca) / (b) cos ^ (2) ((B) / (2)) + (ab) / (c ) cos ^ (2) ((C) / (2)) =

(bc) / (a) cos ^ (2) ((A) / (2)) + (ca) / (b) cos ^ (2) ((B) / (2)) + (ab) / (c ) cos ^ (2) ((C) / (2)) =

(a cos ^ (2) ((A) / (2)) + b cos ^ (2) ((B) / (2)) + c cos ^ (2) ((C) / (2))) / (a + b + c) <= (3) / (4)

(b^(2)-c^(2))/(a)cos A+(c^(2)-a^(2))/(b)cos B+(a^(2)-b^(2))/(c)cos C=0

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

A + B + C = 180 ^ (@) => cos ^ (2) ((A) / (2)) + cos ^ (2) ((B) / (2)) + cos ^ (2) (( C) / (2)) =

cos2a-cos2b + cos2c = 1-4sin a cos b sin c

In any Delta ABC, prove the following: (a+b+c)(cos A+cos B+cos C)=2((a cos^(2))(1)/(2)(A+b cos^(2))(1)/(2)(B+cos^(2))(1)/(2)C)

a(cos C-cos B)=2(b-c)cos^(2)(A)/(2)

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. Prove that bc cos^(2).(A)/(2) + ca cos^(2).(B)/(2) + ab cos^(2).(C)/(2...

    Text Solution

    |

  2. If the sides of a triangle a,b,c be in A.P., then a cos^2 ""C/2 +c cos...

    Text Solution

    |

  3. (b-c)/a cos^2 "" 1/2 A+ (c-a)/b cos^2 "" 1/2 B+(a-b)/c cos^2 ""1/2 C=

    Text Solution

    |

  4. 2 abc.cos ""A/2 cos "" B/2 ""cos""C/2=

    Text Solution

    |

  5. In a triangle ABC, abc s sin "" A/2 sin ""B/2 sin "" C/2=

    Text Solution

    |

  6. 1-tan""A/2.tan""B/2=

    Text Solution

    |

  7. If the sides of triangle a,b,c be is A.P. then tan""A/2+tan""C/2=

    Text Solution

    |

  8. If in a triangle ABC, S = a^2 - (b -c)^2 then tan A is equal to

    Text Solution

    |

  9. If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

    Text Solution

    |

  10. If in a triangle ABC cos A cos B+sin Asin B sin C = 1, then the sides ...

    Text Solution

    |

  11. If in a triangle ABC cos Acos B + sin A sin B sin C = 1, then the tria...

    Text Solution

    |

  12. If in a !ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area in squa...

    Text Solution

    |

  13. In a triangle ABC we define x = tan""(B-C)/2 tan""A/2, y=tan""(C-A)/2 ...

    Text Solution

    |

  14. In a triangle ABC if a =5,b= 4,cos (A - B) = 31/32, then the third sid...

    Text Solution

    |

  15. In a triangle cot A cot B cot C gt 0, then the triangle is

    Text Solution

    |

  16. If cos B cos C+sin B sin C sin^2 A = 1, then the triangle ABC is

    Text Solution

    |

  17. If cos A+ cos B+cos C = 3//2," then " DeltaABC is

    Text Solution

    |

  18. The two adjacent sides of a cyclic quadrilateral are 2a n d5 and the a...

    Text Solution

    |

  19. The two adjacent sides of a cyclic quadrilateral are 2 cm and 5 cm and...

    Text Solution

    |

  20. If a,b,c,d are the side of a quadrilateral, then find the the minimuym...

    Text Solution

    |