Home
Class 12
MATHS
2 abc.cos ""A/2 cos "" B/2 ""cos""C/2=...

`2 abc.cos ""A/2 cos "" B/2 ""cos""C/2=`

A

`aS`

B

`bS`

C

`cS`

D

`2sS`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2abc \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} \), we can use the properties of triangles and some trigonometric identities. ### Step-by-Step Solution: 1. **Understanding the Triangle Properties**: - Let \( A, B, C \) be the angles of triangle \( ABC \). - The semi-perimeter \( s \) of triangle \( ABC \) is given by \( s = \frac{a + b + c}{2} \), where \( a, b, c \) are the lengths of the sides opposite to angles \( A, B, C \) respectively. **Hint**: Remember that the semi-perimeter is half the sum of the lengths of the sides of the triangle. 2. **Using the Cosine of Half Angles**: - The cosine of half angles can be expressed in terms of the sides of the triangle: \[ \cos \frac{A}{2} = \sqrt{\frac{s(s-a)}{bc}}, \quad \cos \frac{B}{2} = \sqrt{\frac{s(s-b)}{ac}}, \quad \cos \frac{C}{2} = \sqrt{\frac{s(s-c)}{ab}} \] **Hint**: Recall the formulas for the cosine of half angles in terms of the sides of the triangle. 3. **Substituting the Half Angle Formulas**: - Substitute the expressions for \( \cos \frac{A}{2}, \cos \frac{B}{2}, \cos \frac{C}{2} \) into the equation: \[ 2abc \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = 2abc \left(\sqrt{\frac{s(s-a)}{bc}} \cdot \sqrt{\frac{s(s-b)}{ac}} \cdot \sqrt{\frac{s(s-c)}{ab}}\right) \] **Hint**: When substituting, ensure to multiply the square roots correctly. 4. **Simplifying the Expression**: - The right-hand side simplifies as follows: \[ = 2abc \cdot \frac{s(s-a)s(s-b)s(s-c)}{abc} = 2s^3 \cdot \sqrt{(s-a)(s-b)(s-c)} \] **Hint**: Notice how the \( abc \) terms cancel out. 5. **Final Expression**: - The final expression can be simplified to: \[ 2abc \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \sqrt{s(s-a)(s-b)(s-c)} \] **Hint**: The final result is a well-known identity in triangle geometry. ### Final Result: Thus, we have shown that: \[ 2abc \cos \frac{A}{2} \cos \frac{B}{2} \cos \frac{C}{2} = \sqrt{s(s-a)(s-b)(s-c)} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

Prove that : (abc)/(s) cos (A)/(2) cos (B)/(2) cos (C )/(2) = triangle .

If in a triangle ABC, b cos ^(2) "" A/2 + a cos ^(2) "" B/2 = (3c)/(2), then

If, in a /_\ ABC , (2 cos A)/a + (cos B)/(b) + (2 cos C)/(c) = a/(bc) + b/(ca) , then: /_A = .....

If in a triangle ABC, 2 (cos A)/(a) +(cos B)/(b)+2(cos C)/c=(a)/(bc)+b/(ca) then the value of the angle A is

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

Assertion A:In/_ABC,sum(cos A)/(sin B sin C)=2 Reason R:In/_ABC,sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

In Delta ABC prove that cos ec(A)/(2)cos ec(B)/(2)cos ec(C)/(2)>=6

If A+B+C=180^(@) then cos2A+cos2B+cos2C=1-4cos A cos B cos C 2.If A+B+C=0 then cos A+cos B+cos C=-1+4(cos A)/(2)(cos B)/(2)(cos C)/(2)

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

In a !ABC cos^(2)A/2+cos^(2)B/2+cos^(2)C/2=

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. If the sides of a triangle a,b,c be in A.P., then a cos^2 ""C/2 +c cos...

    Text Solution

    |

  2. (b-c)/a cos^2 "" 1/2 A+ (c-a)/b cos^2 "" 1/2 B+(a-b)/c cos^2 ""1/2 C=

    Text Solution

    |

  3. 2 abc.cos ""A/2 cos "" B/2 ""cos""C/2=

    Text Solution

    |

  4. In a triangle ABC, abc s sin "" A/2 sin ""B/2 sin "" C/2=

    Text Solution

    |

  5. 1-tan""A/2.tan""B/2=

    Text Solution

    |

  6. If the sides of triangle a,b,c be is A.P. then tan""A/2+tan""C/2=

    Text Solution

    |

  7. If in a triangle ABC, S = a^2 - (b -c)^2 then tan A is equal to

    Text Solution

    |

  8. If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

    Text Solution

    |

  9. If in a triangle ABC cos A cos B+sin Asin B sin C = 1, then the sides ...

    Text Solution

    |

  10. If in a triangle ABC cos Acos B + sin A sin B sin C = 1, then the tria...

    Text Solution

    |

  11. If in a !ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area in squa...

    Text Solution

    |

  12. In a triangle ABC we define x = tan""(B-C)/2 tan""A/2, y=tan""(C-A)/2 ...

    Text Solution

    |

  13. In a triangle ABC if a =5,b= 4,cos (A - B) = 31/32, then the third sid...

    Text Solution

    |

  14. In a triangle cot A cot B cot C gt 0, then the triangle is

    Text Solution

    |

  15. If cos B cos C+sin B sin C sin^2 A = 1, then the triangle ABC is

    Text Solution

    |

  16. If cos A+ cos B+cos C = 3//2," then " DeltaABC is

    Text Solution

    |

  17. The two adjacent sides of a cyclic quadrilateral are 2a n d5 and the a...

    Text Solution

    |

  18. The two adjacent sides of a cyclic quadrilateral are 2 cm and 5 cm and...

    Text Solution

    |

  19. If a,b,c,d are the side of a quadrilateral, then find the the minimuym...

    Text Solution

    |

  20. There can exist a triangle ABC satisfying the conditions :

    Text Solution

    |