Home
Class 12
MATHS
In a triangle ABC, abc s sin "" A/2 sin...

In a triangle ABC,
abc s `sin "" A/2 sin ""B/2 sin "" C/2=`

A

`Delta^2`

B

`3Delta^2`

C

`Delta^3`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ abc \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) \] where \( A, B, C \) are the angles of triangle \( ABC \) and \( a, b, c \) are the lengths of the sides opposite to these angles respectively. ### Step 1: Use the half-angle sine formulas The half-angle sine formulas for a triangle are given by: \[ \sin\left(\frac{A}{2}\right) = \sqrt{\frac{s(s-a)}{bc}}, \quad \sin\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-b)}{ac}}, \quad \sin\left(\frac{C}{2}\right) = \sqrt{\frac{s(s-c)}{ab}} \] where \( s \) is the semi-perimeter of the triangle defined as: \[ s = \frac{a + b + c}{2} \] ### Step 2: Substitute the half-angle sine formulas into the expression Now we substitute these formulas into the original expression: \[ abc \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) = abc \cdot \sqrt{\frac{s(s-a)}{bc}} \cdot \sqrt{\frac{s(s-b)}{ac}} \cdot \sqrt{\frac{s(s-c)}{ab}} \] ### Step 3: Simplify the expression Combining the square roots: \[ = abc \cdot \sqrt{\frac{s(s-a) \cdot s(s-b) \cdot s(s-c)}{(bc)(ac)(ab)}} \] This simplifies to: \[ = abc \cdot \sqrt{\frac{s^3(s-a)(s-b)(s-c)}{a^2b^2c^2}} \] ### Step 4: Factor out common terms Now we can factor out \( abc \): \[ = \sqrt{s^3(s-a)(s-b)(s-c)} \cdot \frac{abc}{abc} = \sqrt{s^3(s-a)(s-b)(s-c)} \] ### Step 5: Relate to the area of triangle The area \( K \) of triangle \( ABC \) can be expressed using Heron's formula as: \[ K = \sqrt{s(s-a)(s-b)(s-c)} \] Thus, we have: \[ abc \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) = \sqrt{s^3} \cdot K \] ### Final Result The final expression simplifies to: \[ abc \cdot \sin\left(\frac{A}{2}\right) \cdot \sin\left(\frac{B}{2}\right) \cdot \sin\left(\frac{C}{2}\right) = \frac{K \cdot s^{3/2}}{abc} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, 2ac sin ((A-B+C)/2) =

In a triange ABC, if sin(A/2) sin (B/2) sin(C/2) = 1/8 prove that the triangle is equilateral.

In a triangle ABC, if cos A cos B+sin A sin B sin C=1, then a:b:c is equal to

Ina triangle ABC (sin A) / (2) (sin B) / (2) (sin C) / (2) <= (1) / (8)

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In triangle ABC , prove that sin(A/2)+sin(B/2)+sin(C/2)le(3)/(2) .

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. (b-c)/a cos^2 "" 1/2 A+ (c-a)/b cos^2 "" 1/2 B+(a-b)/c cos^2 ""1/2 C=

    Text Solution

    |

  2. 2 abc.cos ""A/2 cos "" B/2 ""cos""C/2=

    Text Solution

    |

  3. In a triangle ABC, abc s sin "" A/2 sin ""B/2 sin "" C/2=

    Text Solution

    |

  4. 1-tan""A/2.tan""B/2=

    Text Solution

    |

  5. If the sides of triangle a,b,c be is A.P. then tan""A/2+tan""C/2=

    Text Solution

    |

  6. If in a triangle ABC, S = a^2 - (b -c)^2 then tan A is equal to

    Text Solution

    |

  7. If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

    Text Solution

    |

  8. If in a triangle ABC cos A cos B+sin Asin B sin C = 1, then the sides ...

    Text Solution

    |

  9. If in a triangle ABC cos Acos B + sin A sin B sin C = 1, then the tria...

    Text Solution

    |

  10. If in a !ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area in squa...

    Text Solution

    |

  11. In a triangle ABC we define x = tan""(B-C)/2 tan""A/2, y=tan""(C-A)/2 ...

    Text Solution

    |

  12. In a triangle ABC if a =5,b= 4,cos (A - B) = 31/32, then the third sid...

    Text Solution

    |

  13. In a triangle cot A cot B cot C gt 0, then the triangle is

    Text Solution

    |

  14. If cos B cos C+sin B sin C sin^2 A = 1, then the triangle ABC is

    Text Solution

    |

  15. If cos A+ cos B+cos C = 3//2," then " DeltaABC is

    Text Solution

    |

  16. The two adjacent sides of a cyclic quadrilateral are 2a n d5 and the a...

    Text Solution

    |

  17. The two adjacent sides of a cyclic quadrilateral are 2 cm and 5 cm and...

    Text Solution

    |

  18. If a,b,c,d are the side of a quadrilateral, then find the the minimuym...

    Text Solution

    |

  19. There can exist a triangle ABC satisfying the conditions :

    Text Solution

    |

  20. If the sides of a triangle are 17 , 25a n d28 , then find the greatest...

    Text Solution

    |