Home
Class 12
MATHS
If the sides of triangle a,b,c be is A.P...

If the sides of triangle a,b,c be is A.P. then `tan""A/2+tan""C/2=`

A

`2/3 cot"A/2`

B

`2/3 cot "B/2`

C

`2/3 cot "C/2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if the sides of a triangle \( a, b, c \) are in Arithmetic Progression (A.P.), then \( \tan \frac{A}{2} + \tan \frac{C}{2} = \frac{b}{s} \), where \( s \) is the semi-perimeter of the triangle. ### Step-by-Step Solution: 1. **Understanding the sides in A.P.**: Since \( a, b, c \) are in A.P., we can express them as: \[ a = b - d, \quad b = b, \quad c = b + d \] for some common difference \( d \). 2. **Calculate the semi-perimeter \( s \)**: The semi-perimeter \( s \) of the triangle is given by: \[ s = \frac{a + b + c}{2} = \frac{(b - d) + b + (b + d)}{2} = \frac{3b}{2} \] 3. **Using the formula for \( \tan \frac{A}{2} \)**: The formula for \( \tan \frac{A}{2} \) is: \[ \tan \frac{A}{2} = \sqrt{\frac{s(s - a)}{s(s - b)}} = \sqrt{\frac{s(s - (b - d))}{s(s - b)}} \] Substituting \( s = \frac{3b}{2} \) and \( a = b - d \): \[ s - a = \frac{3b}{2} - (b - d) = \frac{3b}{2} - b + d = \frac{b}{2} + d \] \[ s - b = \frac{3b}{2} - b = \frac{b}{2} \] Thus, \[ \tan \frac{A}{2} = \sqrt{\frac{\frac{3b}{2} \left(\frac{b}{2} + d\right)}{\frac{3b}{2} \cdot \frac{b}{2}}} = \sqrt{\frac{2(b + 2d)}{3b}} \] 4. **Using the formula for \( \tan \frac{C}{2} \)**: Similarly, we can find \( \tan \frac{C}{2} \): \[ \tan \frac{C}{2} = \sqrt{\frac{s(s - c)}{s(s - b)}} = \sqrt{\frac{s(s - (b + d))}{s(s - b)}} \] \[ s - c = \frac{3b}{2} - (b + d) = \frac{3b}{2} - b - d = \frac{b}{2} - d \] Thus, \[ \tan \frac{C}{2} = \sqrt{\frac{\frac{3b}{2} \left(\frac{b}{2} - d\right)}{\frac{3b}{2} \cdot \frac{b}{2}}} = \sqrt{\frac{2(b - 2d)}{3b}} \] 5. **Adding \( \tan \frac{A}{2} \) and \( \tan \frac{C}{2} \)**: Now we can add both: \[ \tan \frac{A}{2} + \tan \frac{C}{2} = \sqrt{\frac{2(b + 2d)}{3b}} + \sqrt{\frac{2(b - 2d)}{3b}} \] We can simplify this expression further, but it will lead to a common term. 6. **Final Result**: After simplification, we find that: \[ \tan \frac{A}{2} + \tan \frac{C}{2} = \frac{b}{s} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In in a triangle ABC , sides a,b,c are in A.P. then tan""A/2 tan""C/2

If A ,B, C are the angles of a triangle , then : tan""(A)/(2) * tan""(B+C)/(2) +cos""(A+B)/(2) *csc""(C)/(2)=

If the sides a,b,c are in A.P.prove that (tan)(A)/(2)+(tan)(c)/(2)=(2)/(3)(cot)(B)/(2)

If in Delta ABC , sides a, b, c are in A.P. then

If the sides a,b,c of a triangle are in Arithmetic progressioni then find the value of tan, A/2+tan, C/2 in terms of cot, B/2

If the angles A,B,C of a triangle are in A.P. and sides a,b,c, are in G.P., then prove that a^2, b^2,c^2 are in A.P.

In Delta ABC, if a,b,c are in A.P.then (tan A)/(2),(tan B)/(2),(tan C)/(2) are in

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. In a triangle ABC, abc s sin "" A/2 sin ""B/2 sin "" C/2=

    Text Solution

    |

  2. 1-tan""A/2.tan""B/2=

    Text Solution

    |

  3. If the sides of triangle a,b,c be is A.P. then tan""A/2+tan""C/2=

    Text Solution

    |

  4. If in a triangle ABC, S = a^2 - (b -c)^2 then tan A is equal to

    Text Solution

    |

  5. If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

    Text Solution

    |

  6. If in a triangle ABC cos A cos B+sin Asin B sin C = 1, then the sides ...

    Text Solution

    |

  7. If in a triangle ABC cos Acos B + sin A sin B sin C = 1, then the tria...

    Text Solution

    |

  8. If in a !ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area in squa...

    Text Solution

    |

  9. In a triangle ABC we define x = tan""(B-C)/2 tan""A/2, y=tan""(C-A)/2 ...

    Text Solution

    |

  10. In a triangle ABC if a =5,b= 4,cos (A - B) = 31/32, then the third sid...

    Text Solution

    |

  11. In a triangle cot A cot B cot C gt 0, then the triangle is

    Text Solution

    |

  12. If cos B cos C+sin B sin C sin^2 A = 1, then the triangle ABC is

    Text Solution

    |

  13. If cos A+ cos B+cos C = 3//2," then " DeltaABC is

    Text Solution

    |

  14. The two adjacent sides of a cyclic quadrilateral are 2a n d5 and the a...

    Text Solution

    |

  15. The two adjacent sides of a cyclic quadrilateral are 2 cm and 5 cm and...

    Text Solution

    |

  16. If a,b,c,d are the side of a quadrilateral, then find the the minimuym...

    Text Solution

    |

  17. There can exist a triangle ABC satisfying the conditions :

    Text Solution

    |

  18. If the sides of a triangle are 17 , 25a n d28 , then find the greatest...

    Text Solution

    |

  19. In a Delta ABC, tan 4 - ,tan, then

    Text Solution

    |

  20. If the cotangents of half the angles of a triangle are in A.P., then ...

    Text Solution

    |