Home
Class 12
MATHS
In a triangle ABC we define x = tan""(B-...

In a triangle ABC we define `x = tan""(B-C)/2 tan""A/2, y=tan""(C-A)/2 tan""B/2 and z=tan""(A-B)/2 tan""C/2` then the value of `x + y +z` (in terms of x, y, z) is

A

`xyz`

B

`-xyz`

C

`2xyz`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x + y + z \) where: \[ x = \tan\left(\frac{B-C}{2}\right) \tan\left(\frac{A}{2}\right), \quad y = \tan\left(\frac{C-A}{2}\right) \tan\left(\frac{B}{2}\right), \quad z = \tan\left(\frac{A-B}{2}\right) \tan\left(\frac{C}{2}\right) \] ### Step 1: Rewrite the expressions for \( x, y, z \) We start by rewriting the expressions using the tangent subtraction formula: \[ x = \frac{\tan\left(\frac{B}{2}\right) - \tan\left(\frac{C}{2}\right)}{1 + \tan\left(\frac{B}{2}\right)\tan\left(\frac{C}{2}\right)} \cdot \tan\left(\frac{A}{2}\right) \] Similarly for \( y \) and \( z \): \[ y = \frac{\tan\left(\frac{C}{2}\right) - \tan\left(\frac{A}{2}\right)}{1 + \tan\left(\frac{C}{2}\right)\tan\left(\frac{A}{2}\right)} \cdot \tan\left(\frac{B}{2}\right) \] \[ z = \frac{\tan\left(\frac{A}{2}\right) - \tan\left(\frac{B}{2}\right)}{1 + \tan\left(\frac{A}{2}\right)\tan\left(\frac{B}{2}\right)} \cdot \tan\left(\frac{C}{2}\right) \] ### Step 2: Apply the Compendo and Divendo Rule Using the compendo and divendo rule, we can express \( \frac{x-1}{x+1} \) for each of \( x, y, z \): \[ \frac{x-1}{x+1} = \frac{B-C}{B+C}, \quad \frac{y-1}{y+1} = \frac{C-A}{C+A}, \quad \frac{z-1}{z+1} = \frac{A-B}{A+B} \] ### Step 3: Multiply the equations Now, we multiply these three equations together: \[ \left(\frac{x-1}{x+1}\right) \left(\frac{y-1}{y+1}\right) \left(\frac{z-1}{z+1}\right) = \frac{(B-C)(C-A)(A-B)}{(B+C)(C+A)(A+B)} \] ### Step 4: Simplify the right-hand side The right-hand side simplifies to: \[ \frac{-2C}{2B} \cdot \frac{-2A}{2C} \cdot \frac{-2B}{2A} = \frac{2C \cdot 2A \cdot 2B}{2B \cdot 2C \cdot 2A} = 1 \] ### Step 5: Rearranging the equation From the multiplication, we have: \[ (x-1)(y-1)(z-1) = (x+1)(y+1)(z+1) \] ### Step 6: Solve for \( x + y + z \) Now, we can expand both sides and simplify to find \( x + y + z \): \[ xyz - (xy + xz + yz) + (x + y + z) - 1 = xyz + (xy + xz + yz) + (x + y + z) + 1 \] This leads us to: \[ 2(x + y + z) = xyz + 2 \] Thus, we find: \[ x + y + z = \frac{xyz + 2}{2} \] ### Final Result The value of \( x + y + z \) in terms of \( x, y, z \) is: \[ \boxed{\frac{xyz + 2}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(TRUE AND FALSE)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (2)(FILL IN THE BLANKS)|3 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC, If x=tan((B-C)/(2))tan((A)/(2)),y=tan((C-A)/(2))tan((B)/(2)),tan((A-B)/(2))tan((C)/(2)) then x+y+z (in terms of x,y,z only ) is

If tan(A+B)=x and tan(A-B)=y then find the values of tan 2A and tan2B

In a triangle ABC, prove that: tan^2, A/2+tan^2, B/2+tan^2, C/2ge1

In a triangle tan A+tan B+tan C=6 and tan A tan B=2, then the values of tan A,tan B and tan C are

In a triangle tan A + tan B + tan C=6 and tan A tan B= 2, then the values of tan A, tan B and tan C are

(b-c)/(a) = (tan B/2-tan( c/2))/(tan B/2+tan C/2)

In any triangle ABC, prove that following: (c)/(a-b)=(tan((A)/(2))+tan((B)/(2)))/(tan((A)/(2))-tan((B)/(2)))

Delta ABC,tan A+tan B+tan C=6 and tan A tan B=2 then the triangle is

In triangle ABC ,prove that the maximum value of tan(A)/(2)tan(B)/(2)tan(C)/(2)is(R)/(2s)

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (3)(MULTIPLE CHOICE QUESTIONS)
  1. If the sides of triangle a,b,c be is A.P. then tan""A/2+tan""C/2=

    Text Solution

    |

  2. If in a triangle ABC, S = a^2 - (b -c)^2 then tan A is equal to

    Text Solution

    |

  3. If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to

    Text Solution

    |

  4. If in a triangle ABC cos A cos B+sin Asin B sin C = 1, then the sides ...

    Text Solution

    |

  5. If in a triangle ABC cos Acos B + sin A sin B sin C = 1, then the tria...

    Text Solution

    |

  6. If in a !ABC , a = 6 , b = 3 and cos (A -B) =4/5,then its area in squa...

    Text Solution

    |

  7. In a triangle ABC we define x = tan""(B-C)/2 tan""A/2, y=tan""(C-A)/2 ...

    Text Solution

    |

  8. In a triangle ABC if a =5,b= 4,cos (A - B) = 31/32, then the third sid...

    Text Solution

    |

  9. In a triangle cot A cot B cot C gt 0, then the triangle is

    Text Solution

    |

  10. If cos B cos C+sin B sin C sin^2 A = 1, then the triangle ABC is

    Text Solution

    |

  11. If cos A+ cos B+cos C = 3//2," then " DeltaABC is

    Text Solution

    |

  12. The two adjacent sides of a cyclic quadrilateral are 2a n d5 and the a...

    Text Solution

    |

  13. The two adjacent sides of a cyclic quadrilateral are 2 cm and 5 cm and...

    Text Solution

    |

  14. If a,b,c,d are the side of a quadrilateral, then find the the minimuym...

    Text Solution

    |

  15. There can exist a triangle ABC satisfying the conditions :

    Text Solution

    |

  16. If the sides of a triangle are 17 , 25a n d28 , then find the greatest...

    Text Solution

    |

  17. In a Delta ABC, tan 4 - ,tan, then

    Text Solution

    |

  18. If the cotangents of half the angles of a triangle are in A.P., then ...

    Text Solution

    |

  19. If the roots of the equation c^(2)x^(2)- c(a+b)x + ab =0 are sin A, s...

    Text Solution

    |

  20. Which of the following holds goods for any triangle ABC ?

    Text Solution

    |