Home
Class 12
MATHS
rr1 r2 r3 =...

`rr_1 r_2 r_3 =`

A

`R^2`

B

`S^2`

C

`s^2`

D

none

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( r \cdot r_1 \cdot r_2 \cdot r_3 \), where \( r \) is the radius of the incircle and \( r_1, r_2, r_3 \) are the radii of the excircles of a triangle, we can follow these steps: ### Step 1: Understand the Definitions - Let \( r \) be the radius of the incircle of triangle \( ABC \). - Let \( r_1, r_2, r_3 \) be the radii of the excircles opposite to vertices \( A, B, C \) respectively. ### Step 2: Use the Formulas The formulas for the inradius \( r \) and the exradii \( r_1, r_2, r_3 \) are: - \( r = \frac{A}{s} \) - \( r_1 = \frac{A}{s - a} \) - \( r_2 = \frac{A}{s - b} \) - \( r_3 = \frac{A}{s - c} \) Where: - \( A \) is the area of the triangle. - \( s \) is the semi-perimeter of the triangle, given by \( s = \frac{a + b + c}{2} \). ### Step 3: Substitute the Values Now, substituting the values into the expression \( r \cdot r_1 \cdot r_2 \cdot r_3 \): \[ r \cdot r_1 \cdot r_2 \cdot r_3 = \left(\frac{A}{s}\right) \cdot \left(\frac{A}{s - a}\right) \cdot \left(\frac{A}{s - b}\right) \cdot \left(\frac{A}{s - c}\right) \] ### Step 4: Combine the Terms This can be simplified as: \[ r \cdot r_1 \cdot r_2 \cdot r_3 = \frac{A^4}{s \cdot (s - a) \cdot (s - b) \cdot (s - c)} \] ### Step 5: Use Heron's Formula Using Heron's formula for the area \( A \): \[ A = \sqrt{s(s - a)(s - b)(s - c)} \] Substituting this into the equation gives: \[ A^2 = s(s - a)(s - b)(s - c) \] Thus: \[ A^4 = (s(s - a)(s - b)(s - c))^2 \] ### Step 6: Final Expression Now substituting back into our expression: \[ r \cdot r_1 \cdot r_2 \cdot r_3 = \frac{(s(s - a)(s - b)(s - c))^2}{s \cdot (s - a)(s - b)(s - c)} \] This simplifies to: \[ r \cdot r_1 \cdot r_2 \cdot r_3 = s \cdot (s - a)(s - b)(s - c) \] ### Conclusion Thus, the final result is: \[ r \cdot r_1 \cdot r_2 \cdot r_3 = s \cdot (s - a)(s - b)(s - c) \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|9 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

If r,r_(1) ,r_(2), r_(3) have their usual meanings , the value of 1/(r_(1))+1/(r_(2))+1/(r_(3)) , is

There circle C_1,C_2 and C_3 with radii r_1 , r_2 and r_3 (where r_1 तीन वृत्त C_1,C_2 तथा C_3 जिनको त्रिज्याएँ r_1 , r_2 तथा r_3 है, (जहाँ r_1

Prove that r_(1) r_(2) + r_(2) r_(3) + r_(3) r_(1) = (1)/(4) (a + b + c)^(2)

prove that : triangle ABC, 1/r_1+1/r_2+1/r_3=1/r