Home
Class 12
MATHS
r2r3+r3r1+r1r2=...

`r_2r_3+r_3r_1+r_1r_2=`

A

`s^2`

B

`S^2`

C

`S^2//r^2`

D

`R^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( r_2 r_3 + r_3 r_1 + r_1 r_2 \), we will use the formulas for the inradii of a triangle. The inradii \( r_1, r_2, r_3 \) are defined in terms of the area \( S \) of the triangle and its semi-perimeter \( s \). ### Step-by-Step Solution: 1. **Define the Inradii**: - The inradii \( r_1, r_2, r_3 \) can be expressed as: \[ r_1 = \frac{S}{s-a}, \quad r_2 = \frac{S}{s-b}, \quad r_3 = \frac{S}{s-c} \] where \( S \) is the area of the triangle, \( s \) is the semi-perimeter, and \( a, b, c \) are the lengths of the sides opposite to the vertices where the inradii are defined. 2. **Substitute the Inradii into the Expression**: - We substitute \( r_1, r_2, r_3 \) into the expression: \[ r_2 r_3 + r_3 r_1 + r_1 r_2 = \left(\frac{S}{s-b}\right)\left(\frac{S}{s-c}\right) + \left(\frac{S}{s-c}\right)\left(\frac{S}{s-a}\right) + \left(\frac{S}{s-a}\right)\left(\frac{S}{s-b}\right) \] 3. **Simplify Each Term**: - Each term can be simplified: \[ = \frac{S^2}{(s-b)(s-c)} + \frac{S^2}{(s-c)(s-a)} + \frac{S^2}{(s-a)(s-b)} \] 4. **Combine the Terms**: - To combine these fractions, we need a common denominator: \[ = S^2 \left( \frac{(s-a) + (s-b) + (s-c)}{(s-a)(s-b)(s-c)} \right) \] 5. **Simplify the Numerator**: - The numerator simplifies to: \[ (s-a) + (s-b) + (s-c) = 3s - (a+b+c) = 3s - 2s = s \] - Thus, we have: \[ = S^2 \cdot \frac{s}{(s-a)(s-b)(s-c)} \] 6. **Final Expression**: - Therefore, the final expression for \( r_2 r_3 + r_3 r_1 + r_1 r_2 \) is: \[ \frac{S^2 s}{(s-a)(s-b)(s-c)} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|9 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

show that r_(2)r_(3) +r_(3) r_(1)+ r _(1) r_(2)=s^(2)

For any three non-zero vectors r_1,r_2 and r_3 .|(r_1.r_1,r_1.r_2,r_1.r_3),(r_2.r_1,r_2.r_2,r_2.r_3),(r_3.r_1,r_3.r_2,r_3.r_3)|=0. Then which of the following is false

(r_(3)+r_(1))(r_(3)+r_(2))sin C=2r_(3)sqrt(r_(2)r_(3)+r_(3)r_(1)+r_(1)r_(2))

If r_(1),r_(2),r_(3),r are in usual notation in Delta ABC then r_(1)r_(2)r_(3)-r(r_(1)r_(2)+r_(2)r_(3)+r_(3)r_(1))=

If r_(1),r_(2),r_(3) are the radii of the escribed circlesof a Delta ABC and ifr is the radius of its incircle then r_(1)r_(2)r_(3)-r(r_(1)R_(2)+r_(2)r_(3)+r_(3)r_(1))=