`r_2r_3=`

A

`S tan "A/2`

B

`S cot "A/2`

C

`S sin " A/2`

D

`S cos A/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( r_2 r_3 \), where \( r_2 \) and \( r_3 \) are the radii of the excircles of a triangle, we will follow these steps: ### Step 1: Write the formulas for \( r_2 \) and \( r_3 \) The formulas for the radii of the excircles are given by: \[ r_2 = \frac{S}{s - b} \] \[ r_3 = \frac{S}{s - c} \] where \( S \) is the area of the triangle, and \( s \) is the semi-perimeter defined as: \[ s = \frac{a + b + c}{2} \] ### Step 2: Multiply \( r_2 \) and \( r_3 \) Now, we can find \( r_2 r_3 \): \[ r_2 r_3 = \left( \frac{S}{s - b} \right) \left( \frac{S}{s - c} \right) = \frac{S^2}{(s - b)(s - c)} \] ### Step 3: Substitute the area \( S \) Using Heron's formula for the area \( S \): \[ S = \sqrt{s(s - a)(s - b)(s - c)} \] we can substitute \( S \) into the expression for \( r_2 r_3 \): \[ r_2 r_3 = \frac{\left( \sqrt{s(s - a)(s - b)(s - c)} \right)^2}{(s - b)(s - c)} \] ### Step 4: Simplify the expression Now, simplifying the expression: \[ r_2 r_3 = \frac{s(s - a)(s - b)(s - c)}{(s - b)(s - c)} \] The \( (s - b) \) and \( (s - c) \) terms cancel out: \[ r_2 r_3 = s(s - a) \] ### Final Result Thus, the final result for \( r_2 r_3 \) is: \[ r_2 r_3 = s(s - a) \] ---
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|9 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

Prove the questions a(r r_(1) + r_(2)r_(3)) = b(r r_(2) + r_(3) r_(1)) = c (r r_(3) + r_(1) r_(2))

If r_1=r_2+r_3+r prove that the triangle is right angled .