Home
Class 12
MATHS
rr1 cot (A//2)=...

`rr_1 cot (A//2)=`

A

`Delta`

B

`Delta^2`

C

`Delta/2`

D

`2 Delta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( rr_1 \cot \left( \frac{A}{2} \right) \), we need to understand the definitions of \( R \), \( R_1 \), and \( \delta \) in the context of triangles. ### Step-by-Step Solution: 1. **Understand the Notations**: - Let \( \delta \) be the area of the triangle. - Let \( R \) be the circumradius of the triangle, given by the formula: \[ R = \frac{\delta}{s} \] where \( s \) is the semi-perimeter of the triangle. - Let \( R_1 \) be the inradius of the triangle, given by: \[ R_1 = \frac{A}{2} \cdot s \] where \( A \) is the length of side opposite to angle \( A \). 2. **Substituting the Values**: - We substitute \( R \) and \( R_1 \) into the expression \( rr_1 \cot \left( \frac{A}{2} \right) \): \[ rr_1 = R \cdot R_1 = \left( \frac{\delta}{s} \right) \cdot \left( s \cdot \frac{A}{2} \right) \] 3. **Simplifying the Expression**: - The \( s \) in the numerator and denominator cancels out: \[ rr_1 = \delta \cdot \frac{A}{2} \] 4. **Using the Cotangent Identity**: - Now we need to multiply by \( \cot \left( \frac{A}{2} \right) \): \[ rr_1 \cot \left( \frac{A}{2} \right) = \delta \cdot \frac{A}{2} \cdot \cot \left( \frac{A}{2} \right) \] 5. **Final Expression**: - Since \( \cot \left( \frac{A}{2} \right) = \frac{\cos \left( \frac{A}{2} \right)}{\sin \left( \frac{A}{2} \right)} \), we can express the final result as: \[ rr_1 \cot \left( \frac{A}{2} \right) = \delta \cdot \frac{A}{2} \cdot \cot \left( \frac{A}{2} \right) \] ### Conclusion: Thus, the value of \( rr_1 \cot \left( \frac{A}{2} \right) \) simplifies to: \[ \delta \cdot \frac{A}{2} \cdot \cot \left( \frac{A}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|9 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

(sqrt (rr_ (1) r_ (2) r_ (3))) / (2Rr (sin A + sin B + sin C) =)

If cot A +(1)/( cot A) =2 , then cot^2 A + (1)/( cot^2 A) is equal to

In a triangle ABC if cot((A)/(2))*cot((B)/(2))=c,cot((B)/(2))*cot((C)/(2))=a and cot((C)/(2))*cot((A)/(2))=b then (1)/(s-a)+(1)/(s-b)+(1)/(s-c)=

If A+B=225 show that (cot A)/(1+cot A)*(cot B)/(1+cot B)=(1)/(2)

In Delta ABC, the value of ((cot A)/(2)(cot B)/(2)-1)/((cot A)/(2)(cot B)/(2)) is

In Delta ABC the value of (cot((A)/(2))cot((B)/(2))-1)/(cot((A)/(2))cot((B)/(2))) is

The value of the expression cot^(-1) (1/2) + cot^(-1) (9/2) + cot^(-1) (25/2) + cot^(-1) (49/2) upto + .......n terms is

Prove that (1+tan^(2)A)/(1+cot^(2)A)=((1-tan A)/(1-cot A))^(2)=tan^(2)A