Home
Class 12
MATHS
(1/r - 1/r1)(1/r-1/r2)(1/r - 1/r3)=...

`(1/r - 1/r_1)(1/r-1/r_2)(1/r - 1/r_3)=`

A

`(16R)/(r^2(Sigma a)^2)`

B

`R/((Sigma a)^2)`

C

`(4R)/((Sigma a)^2)`

D

`(16R)/((Sigma a)^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{1}{r} - \frac{1}{r_1})(\frac{1}{r} - \frac{1}{r_2})(\frac{1}{r} - \frac{1}{r_3})\), we will follow these steps: ### Step 1: Define the variables We know that: - \( r_1 \) is the radius of the incircle of the triangle. - \( r_2 \) is the radius of the A-excircle. - \( r_3 \) is the radius of the B-excircle. - \( r \) is the radius of the circumcircle. ### Step 2: Use the formulas for the radii The formulas for the radii are: - \( r_1 = \frac{\Delta}{s} \) - \( r_2 = \frac{\Delta}{s - a} \) - \( r_3 = \frac{\Delta}{s - b} \) - \( r = \frac{abc}{4\Delta} \) Where: - \( \Delta \) is the area of the triangle. - \( s \) is the semi-perimeter, given by \( s = \frac{a + b + c}{2} \). ### Step 3: Substitute the values into the expression We can rewrite the expression as: \[ \left(\frac{1}{r} - \frac{s}{\Delta}\right)\left(\frac{1}{r} - \frac{s - a}{\Delta}\right)\left(\frac{1}{r} - \frac{s - b}{\Delta}\right) \] ### Step 4: Simplify each term Substituting the values of \( r_1, r_2, r_3 \): 1. For \( \frac{1}{r} - \frac{1}{r_1} \): \[ \frac{1}{r} - \frac{s}{\Delta} = \frac{\Delta - sr}{r\Delta} \] 2. For \( \frac{1}{r} - \frac{1}{r_2} \): \[ \frac{1}{r} - \frac{s - a}{\Delta} = \frac{\Delta - (s - a)r}{r\Delta} \] 3. For \( \frac{1}{r} - \frac{1}{r_3} \): \[ \frac{1}{r} - \frac{s - b}{\Delta} = \frac{\Delta - (s - b)r}{r\Delta} \] ### Step 5: Combine the terms Now we multiply the three simplified terms: \[ \left(\frac{\Delta - sr}{r\Delta}\right)\left(\frac{\Delta - (s - a)r}{r\Delta}\right)\left(\frac{\Delta - (s - b)r}{r\Delta}\right) \] ### Step 6: Factor out common terms Factoring out \( \frac{1}{(r\Delta)^3} \): \[ \frac{1}{(r\Delta)^3} \left(\Delta - sr\right)\left(\Delta - (s - a)r\right)\left(\Delta - (s - b)r\right) \] ### Step 7: Final expression The final expression can be simplified further depending on the values of \( a, b, c \) and their relationships.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|9 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

In triangleABC , If r_(1), r_(2), r_(3) are exradii opposites to angles A,B and C respectively. Then (1/r_(1) +1/r_(2)) (1/r_(2)+1/r_(3)) (1/r_(3)+1/r_(1)) is equal to

If in a triangle, (1-(r_(1))/(r_(2))) (1 - (r_(1))/(r_(3))) = 2 , then the triangle is

((1)/(r)+(1)/(r_(1))+(1)/(r_(2))+(1)/(r_(3)))^(2)=(4)/(r)((1)/(r_(1))+(1)/(r_(2))+(1)/(r_(3)))

If in a triangle (1-(r_(1))/(r_(2)))(1-(r_(1))/(r_(3)))=2 , then the triangle is

In any Delta ABC,r_(1),r_(2),r_(3),r stands for its usual meaning then (1)/(r_(1))+(1)/(r_(2))+(1)/(r_(3)) is

In triangle ABC, 2b=a+c .If r_(1),r_(2),r_(3) be the exradii of the triangle,then (1)/(r_(1)),(1)/(r_(2)) and (1)/(r_(3)) are in