Home
Class 12
MATHS
(1/r1 + 1/r2)(1/r2 + 1/r3)(1/r3 + 1/r1)=...

`(1/r_1 + 1/r_2)(1/r_2 + 1/r_3)(1/r_3 + 1/r_1)=`

A

`(16R)/(abc)`

B

`(R^3)/(4abc)`

C

`(64R^3)/(a^2b^2c^2)`

D

`(R^3)/(abc)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\frac{1}{r_1} + \frac{1}{r_2})(\frac{1}{r_2} + \frac{1}{r_3})(\frac{1}{r_3} + \frac{1}{r_1})\), we will use the formulas for the radii of the incircle and circumcircle of a triangle. ### Step-by-Step Solution: 1. **Identify the Radii**: The radii \(r_1\), \(r_2\), and \(r_3\) represent the radii of the incircle of the triangle opposite to vertices \(A\), \(B\), and \(C\) respectively. The formulas for the radii are: \[ r_1 = \frac{\Delta}{s - a}, \quad r_2 = \frac{\Delta}{s - b}, \quad r_3 = \frac{\Delta}{s - c} \] where \(\Delta\) is the area of the triangle and \(s\) is the semi-perimeter given by \(s = \frac{a + b + c}{2}\). 2. **Calculate \(\frac{1}{r_i}\)**: We can express \(\frac{1}{r_i}\) for each radius: \[ \frac{1}{r_1} = \frac{s - a}{\Delta}, \quad \frac{1}{r_2} = \frac{s - b}{\Delta}, \quad \frac{1}{r_3} = \frac{s - c}{\Delta} \] 3. **Substitute into the Expression**: Substitute these values into the expression: \[ \left( \frac{s - a}{\Delta} + \frac{s - b}{\Delta} \right)\left( \frac{s - b}{\Delta} + \frac{s - c}{\Delta} \right)\left( \frac{s - c}{\Delta} + \frac{s - a}{\Delta} \right) \] 4. **Simplify Each Term**: Factor out \(\frac{1}{\Delta}\) from each term: \[ = \frac{1}{\Delta^3} \left( (s - a + s - b)(s - b + s - c)(s - c + s - a) \right) \] This simplifies to: \[ = \frac{1}{\Delta^3} \left( (2s - a - b)(2s - b - c)(2s - c - a) \right) \] 5. **Substitute \(s\)**: Recall that \(s = \frac{a + b + c}{2}\). Therefore: \[ 2s - a - b = c, \quad 2s - b - c = a, \quad 2s - c - a = b \] Thus, we can rewrite the expression as: \[ = \frac{1}{\Delta^3} \cdot (c)(a)(b) = \frac{abc}{\Delta^3} \] 6. **Relate to the Circumradius**: The area \(\Delta\) can be expressed in terms of the circumradius \(R\) as: \[ \Delta = \frac{abc}{4R} \] Therefore, substituting for \(\Delta\): \[ \Delta^3 = \left(\frac{abc}{4R}\right)^3 = \frac{a^3b^3c^3}{64R^3} \] 7. **Final Expression**: Substitute this back into the expression: \[ = \frac{abc}{\frac{a^3b^3c^3}{64R^3}} = \frac{64R^3}{a^2b^2c^2} \] ### Final Result: Thus, the value of the expression \((\frac{1}{r_1} + \frac{1}{r_2})(\frac{1}{r_2} + \frac{1}{r_3})(\frac{1}{r_3} + \frac{1}{r_1})\) is: \[ \frac{64R^3}{a^2b^2c^2} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(TRUE AND FALSE)|9 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (4)(FILL IN THE BLANKS)|3 Videos
  • PROPERTIES OF TRIANGLES

    ML KHANNA|Exercise Problem Set (3)(FILL IN THE BLANKS)|2 Videos
  • PROGRESSIONS

    ML KHANNA|Exercise MISCELLANEOUS EXERCISE (ASSERTION/REASON) |1 Videos
  • RECTANGULAR CARTESIAN CO-ORDINATE SYSTEM AND THE STRAIGHT LINE

    ML KHANNA|Exercise COMPREHENSION |11 Videos

Similar Questions

Explore conceptually related problems

Show that (r_(1)+ r _(2))(r _(2)+ r _(3)) (r_(3)+r_(1))=4Rs^(2)

r+r_(3)+r_(1)-r_(2)=

Value of 1/(r_(1)^2)+ 1/(r_(2)^2)+ 1/(r_(3)^2)+ 1/(r_()^2) is :

Prove the questions a(r r_(1) + r_(2)r_(3)) = b(r r_(2) + r_(3) r_(1)) = c (r r_(3) + r_(1) r_(2))

ML KHANNA-PROPERTIES OF TRIANGLES -Problem Set (4)(MULTIPLE CHOICE QUESTIONS)
  1. (1/r - 1/r1)(1/r-1/r2)(1/r - 1/r3)=

    Text Solution

    |

  2. 1/(r1^2)+1/(r2^2)+1/(r3^2)+1/(r^2)=

    Text Solution

    |

  3. (1/r1 + 1/r2)(1/r2 + 1/r3)(1/r3 + 1/r1)=

    Text Solution

    |

  4. prove that : triangle ABC, 1/r1+1/r2+1/r3=1/r

    Text Solution

    |

  5. If a triangle of maximum area is inscribed within a circle of radius R...

    Text Solution

    |

  6. Prove that : (r1-r)/(a) +(r2-r)/(b) = (c )/(r3).

    Text Solution

    |

  7. (r1+r2)(r2+r3)(r3+r1)=

    Text Solution

    |

  8. 1/(bc)+1/(ca)+1/(ab)=

    Text Solution

    |

  9. (r1)/((s-b)(s-c))+(r2)/((s-c)(s-a))+(r3)/((s-a)(s-b))=

    Text Solution

    |

  10. In A B C ,(a b-r1r2)/(r3),w h e r ea ,b ,r1r2, r3, Randr have usual me...

    Text Solution

    |

  11. Value of the expression (b-c)/(r1)+(c-a)/(r2)+(a-b)/(r3) is equal to 1...

    Text Solution

    |

  12. If in a triangle (1-(r(1))/(r(2)))(1-(r(1))/(r(3)))=2, then the trian...

    Text Solution

    |

  13. If the sides of a triangle are in A.P. as well as in G.P. then the val...

    Text Solution

    |

  14. If r1=r2+r3+r prove that the triangle is right angled .

    Text Solution

    |

  15. If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2), then the triangle ABC...

    Text Solution

    |

  16. In a triangle ABC, if (a-b)/(b-c)= (s-a)/(s-c), then r1,r2,r3 are in

    Text Solution

    |

  17. If r1 , r2 , r3 in a triangle be in H.P. then the sides are

    Text Solution

    |

  18. The hormonic mean of r1 ,r2, r3 is

    Text Solution

    |

  19. In a triangle if angleC=90^@ " then " R+r=

    Text Solution

    |

  20. In DeltaABC," if " angleC=90^(@)," then " (a+c)/(b)+(b+c)/(a) is equal...

    Text Solution

    |