Home
Class 12
MATHS
If C(r ) = (n!)/(r!(n - r)!), then prove...

If `C_(r ) = (n!)/(r!(n - r)!)`, then prove that
`sqrt(C_(1)) + sqrt(C_(2)) + …. + sqrt(C_(n)) sqrt(n(2^(n) - 1))`

Text Solution

Verified by Experts

A.M. of `(1//2)th` powers `lt (1//2)th` power of A.M.
`therefore ((C_1)^((1)/(2))+(C_2)^((1)/(2))+...+(C_n)^((1)/(2)))/(n)lt ((C_1+C_2+....C_n)/(n))^(1//2)`
or ` (sqrt(C_1)+sqrt(C_2)+....+ sqrt(C_n))/(n) lt ((2^n-1)/(n))^(1//2)`
or ` sqrt(C_1)+sqrt(C_2)+....+sqrt(C_n)lt (n sqrt((2^n-1)))/(sqrt(n))`
Hence,
` sqrt(C_1)+sqrt(C_2)+....+sqrt(C_n) lt sqrt([n(2^n-1)])`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Single)|20 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Multiple)|5 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise 6.3|6 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

If C_r=(n !)/([r !(n-r)]), the prove that sqrt(C_1)+sqrt(C_2)+.......sqrt(C_n) lt sqrt(n(2^n-1)) ="">

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r), then prove that C_(1)+2c_(2)+3C_(1)+...+nC_(n)=n2^(n-1)...

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(0)+(C_(1))/(2)+......+(C_(n))/(n+1)=2

If (1+x)^(n)=sum_(r=0)^(n)C_(r)x^(r) then prove that C_(1)+2C_(2)+3C_(3)+....+nC_(n)=n2^(n-1)

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

If n>2, then prove that C_(1)(a-1)-C_(2)xx(a-2)+...+(-1)^(n-1)C_(n)(a-n)=a, where C_(r)=^(n)C_(r)

lim_ (n rarr oo) sum_ (n = 1) ^ (n) (sqrt (n)) / (sqrt (r) (3sqrt (r) + 4sqrt (n)) ^ (2))

Prove that .^(n)C_(r)+^(n)C_(r-1)=^(n+1)C_(r)