Home
Class 12
MATHS
If a gt 0,bgt 0,cgt0 and 2a +b+3c=1, the...

If `a gt 0,bgt 0,cgt0 and 2a +b+3c=1`, then

A

`a^4b^2c^2` is greatest then `a=(1)/(4)`

B

`a^4b^2c^2` is greatest then `b=(1)/(4)`

C

`a^4b^2c^2` is greatest then `c=(1)/(12)`

D

greatest value of `a^4b^2c^2 is (1)/(9.4^8)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C, D

A.M. `ge` G.M
`implies ((2a)/(4) + (2a)/(4) + (2a)/(4) + (2a)/(4) + (b)/(2) + (b)/(2) + (3c)/(2) + (3c)/(2))/(8)`
`ge .^(8)sqrt((2a)/(4).(2a)/(4).(2a)/(4).(2a)/(4).(b)/(2).(b)/(2).(3c)/(2).(3c)/(2))`
`implies (2a + b + 3c)/(8) ge ((3^(2))/(2^(8)) a^(4) b^(2) c^(2))^(1/8)`
The greatest value takes place when A.M =G.M ad
`(2a)/(4) = (b)/(2) = (3c)/(2)`
`implies a = b = 3c = K`
Now, `2a + b + 3c = 1`
`implies 2K + K + K = 1`
`implies K = 1//4`
`implies a = b = 1//4` and `c = 1//12`
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Comprehension)|6 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Numerical) & JEE Previous Year|11 Videos
  • INEQUALITIES INVOLVING MEANS

    CENGAGE|Exercise Exercise (Single)|20 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE|Exercise Single correct Answer|21 Videos
  • INTEGRALS

    CENGAGE|Exercise Solved Examples And Exercises|324 Videos

Similar Questions

Explore conceptually related problems

Let agt0, bgt0, cgt0 and a+b+c=6 then ((ab+1)^(2))/(b^(2))+((bc+1)^(2))/(c^(2))+((ca+1)^(2))/(a^(2)) may be

If agt0, bgt0, cgt0 and the minimum value of a^2(b+c)+b^2(c+a)+c^2(a+b) is kabc, then k is (A) 1 (B) 3 (C) 6 (D) 4

If a gt0, bgt0,cgt0 are respectively the p^("th"),q^("th"),r^("th") terms of a G.P.,. Then the value of the determinant |{:(loga, p,1),(logb,q,1),(logc,r,1):}| is

If 2a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greatest value of a^(4)b^(2)c^(2)"_____" .

If a+b+3c=1 and a gt 0, b gt 0, c gt 0 , then the greratest value of a^(2)b^(2)c^(2) is

If a gt 0 and b^(2) - 4 ac = 0 then solve ax^(3) + (a + b) x^(2) + (b + c) x + c gt 0 .

Let a gt 0, b gt 0 and c lt0. Then, both the roots of the equation ax^(2) +bx+c=0

If a+b+c=3 and agt0,bgt0,cgt0 then the greatest value of a^(2)b^(2)c^(2) is