Home
Class 12
MATHS
int(0)^(e^(2)){(1)/((logx))-(1)/((logx)^...

`int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16C|58 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

int{(1)/((logx))-(1)/((logx)^(2))}dx=?

int[(1)/(logx)-(1)/((logx)^(2))]dx=

int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

int(log(x//e))/((logx)^(2))dx=

int(logx)^(2)dx=?

int_(1)^(e){((logx-1))/(1+(logx)^(2))}^(2) dx is equal to

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

If int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then