Home
Class 12
MATHS
int(0)^(e^(2)){(1)/((logx))-(1)/((logx)^...

`int_(0)^(e^(2)){(1)/((logx))-(1)/((logx)^(2))}dx`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16B|50 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Exercise 16C|58 Videos
  • DEFINITE INTEGRALS

    RS AGGARWAL|Exercise Objective Questions|73 Videos
  • CROSS,OR VECTOR, PRODUCT OF VECTORS

    RS AGGARWAL|Exercise Exercise 24|26 Videos
  • DETERMINANTS

    RS AGGARWAL|Exercise Objective Questions|29 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integrals: int{(1)/(logx)-(1)/((log)^(2))}dx

int(log(x//e))/((logx)^(2))dx=

Knowledge Check

  • int{(1)/((logx))-(1)/((logx)^(2))}dx=?

    A
    x log x+C
    B
    `(x)/(logx)+C`
    C
    `x+(1)/(logx)+C`
    D
    none of these
  • int[(1)/(logx)-(1)/((logx)^(2))]dx=

    A
    `(1)/(logx)+c`
    B
    `(x)/(logx)+c`
    C
    `(x)/((logx)^(2))+c`
    D
    `logx+c`
  • int_(e)^(e^(2)) (1/logx-1/((logx)^(2)))dx=

    A
    `(e(e-1))/2`
    B
    `(-e(e-1))/2`
    C
    `(e(e-2))/2`
    D
    `(-e(e-2))/2`
  • Similar Questions

    Explore conceptually related problems

    int(logx)^(2)dx=?

    int_(1)^(e){((logx-1))/(1+(logx)^(2))}^(2) dx is equal to

    int{(logx-1)/(1+(logx)^2)}^(2)dx=

    The value of int_(1)^(e^(2)) (dx)/(x(1+logx)^(2)) is

    If int _(2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then