Home
Class 12
MATHS
Find the shortest distance between the g...

Find the shortest distance between the given line
`vec(r )=(hat(i) +2hat(j) +hat(k)) + lambda(hat(i)-hat(j) + hat(k))`
`vec(r )=(2hat(i) -hat(j) -hat(k)) + lambda(2hat(i) + hat(j) +2hat(k))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the two given lines, we can follow these steps: ### Step 1: Identify the lines The first line is given by: \[ \vec{r_1} = \hat{i} + 2\hat{j} + \hat{k} + \lambda(\hat{i} - \hat{j} + \hat{k}) \] The second line is given by: \[ \vec{r_2} = (2\hat{i} - \hat{j} - \hat{k}) + \mu(2\hat{i} + \hat{j} + 2\hat{k}) \] ### Step 2: Extract points and direction vectors From the first line, we can identify: - Point \(A_1 = \hat{i} + 2\hat{j} + \hat{k}\) - Direction vector \(B_1 = \hat{i} - \hat{j} + \hat{k}\) From the second line, we can identify: - Point \(A_2 = 2\hat{i} - \hat{j} - \hat{k}\) - Direction vector \(B_2 = 2\hat{i} + \hat{j} + 2\hat{k}\) ### Step 3: Find the vector between the two points Calculate the vector \(A_2 - A_1\): \[ A_2 - A_1 = (2\hat{i} - \hat{j} - \hat{k}) - (\hat{i} + 2\hat{j} + \hat{k}) = (2 - 1)\hat{i} + (-1 - 2)\hat{j} + (-1 - 1)\hat{k} = \hat{i} - 3\hat{j} - 2\hat{k} \] ### Step 4: Calculate the cross product of the direction vectors Now we need to find the cross product \(B_1 \times B_2\): \[ B_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \] Using the determinant method: \[ B_1 \times B_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 2 & 1 & 2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-1)(2) - (1)(1)) - \hat{j}((1)(2) - (1)(2)) + \hat{k}((1)(1) - (-1)(2)) \] \[ = \hat{i}(-2 - 1) - \hat{j}(2 - 2) + \hat{k}(1 + 2) = -3\hat{i} + 0\hat{j} + 3\hat{k} = -3\hat{i} + 3\hat{k} \] ### Step 5: Find the magnitude of the cross product \[ |B_1 \times B_2| = \sqrt{(-3)^2 + 0^2 + 3^2} = \sqrt{9 + 0 + 9} = \sqrt{18} = 3\sqrt{2} \] ### Step 6: Calculate the shortest distance The formula for the shortest distance \(d\) between two skew lines is given by: \[ d = \frac{|(A_2 - A_1) \cdot (B_1 \times B_2)|}{|B_1 \times B_2|} \] Calculating the dot product: \[ A_2 - A_1 = \hat{i} - 3\hat{j} - 2\hat{k} \] \[ A_2 - A_1 \cdot (B_1 \times B_2) = (\hat{i} - 3\hat{j} - 2\hat{k}) \cdot (-3\hat{i} + 3\hat{k}) = (-3)(1) + (0)(-3) + (3)(-2) = -3 + 0 - 6 = -9 \] Now substituting into the distance formula: \[ d = \frac{|-9|}{3\sqrt{2}} = \frac{9}{3\sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2} \] ### Final Answer The shortest distance between the two lines is: \[ \frac{3\sqrt{2}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27E|6 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27F|23 Videos
  • STRAIGHT LINE IN SPACE

    RS AGGARWAL|Exercise Exercise 27C|13 Videos
  • SOME SPECIAL INTEGRALS

    RS AGGARWAL|Exercise Exercise 14C|26 Videos
  • SYSTEM OF LINEAR EQUATIONS

    RS AGGARWAL|Exercise Objective Questions|53 Videos

Similar Questions

Explore conceptually related problems

vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) vec(r)=(-3hat(i) -8hat(j) -3hat(k)) + mu (2hat(i) +3hat(j) +3hat(k))

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

Find the shortest distance between the lines: vec(r) = hat(i) + 2 hat(j) - 3 hat(k) + lambda (3 hat(i) - 4 hat(j) - hat(k)) and vec(r) = 2 hat(i) - hat(j) + hat(k) + mu (hat(i) + hat(j) + 5 hat(k)) .

Show that the lines vec(r) =(hat(i) +2hat(j) +hat(k)) +lambda (hat(i)-hat(j)+hat(k)) " and " vec(r ) =(hat(i) +hat(j) -hat(k)) + mu (hat(i)- hat(j) + 2hat(k)) Do not intersect .

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by: vec(r) = (3 hat(i) + 8 hat(j) + 3 hat(k) ) + lambda (3 hat(i) - hat(j) + hat(k)) and vec(r) = (-3 hat(i) - 7 hat(j) + 6 hat(k)) + mu (-3 hat(i) + 2 hat(j) + 4 hat(k)) .

Find the shortest distance between the lines L_(1) " and " L_(2) given by vec( r )=hat(i) +hat(j) +lambda(2hat(i)-hat(j)+hat(k)) " and " vec(r )=2hat(i) +hat(j)-hat(k) +mu (4hat(i) -2hat(j) +2hat(k))

Find the shortest distance between the lines vec r=(hat i+2hat j+hat k)+lambda(hat i-hat j+hat k) and vec r=(2hat i-hat j-hat k)+mu(2hat i+hat j+2hat k)

RS AGGARWAL-STRAIGHT LINE IN SPACE-Exercise 27D
  1. Find the shortest distance between the given line vec(r )=(hat(i) +h...

    Text Solution

    |

  2. vec(r )=(-4hat(i)+4hat(j) +hat(k)) + lambda (hat(i) +hat(j) -hat(k)) ...

    Text Solution

    |

  3. vec(r ) =(hat(i) +2hat(j) +3hat(k)) + lambda(hat(i) -3hat(j) +2hat(k))...

    Text Solution

    |

  4. Find the shortest distance between the given line vec(r )=(hat(i) +2h...

    Text Solution

    |

  5. Find the shortest distance between the given line vec(r ) =(hat(i)+2h...

    Text Solution

    |

  6. Find the shortest distance between the given line vec(r ) =(6hat(i) +...

    Text Solution

    |

  7. Find the shortest distance between the given line vec(r) =(3-t) hat(i...

    Text Solution

    |

  8. Find the shortest distance between the given line vec(r ) =(lambda-1)...

    Text Solution

    |

  9. Compute the shortest distance between the lines vec(r )=(hat(i) ...

    Text Solution

    |

  10. Show that the lines vec(r )=(3hat(i) -15hat(j) + 9hat(k)) + lambd...

    Text Solution

    |

  11. Show that the lines vec( r)=(2hat(i) -3hat(k)) + lambda(hat(i) +2h...

    Text Solution

    |

  12. Show that the lines vec(r )=(hat(i) +2hat(j) +3hat(k)) + lambda(2h...

    Text Solution

    |

  13. Find the shortest distance between the lines vecr=(hati+2hatj-4hatk)+...

    Text Solution

    |

  14. Find the distance between the parallel lines L(1) " and " L(2) w...

    Text Solution

    |

  15. Find the vector equtions of a line passing through the point (2,...

    Text Solution

    |

  16. Write the vector equations of each of the following lines and h...

    Text Solution

    |

  17. Find the shortest distance between the lines (x-1)/2=(y-2)/3=(z-3)/...

    Text Solution

    |

  18. Find the shortest distance distance between the following lines :(x-1)...

    Text Solution

    |

  19. Find the shortest distance between the lines(x-12)/(-9) =(y-1)/(4)=(z-...

    Text Solution

    |