Home
Class 12
MATHS
If z = |{:(1 , 1 + 2i, - 5i),(1 - 2i,-3,...

If z = `|{:(1 , 1 + 2i, - 5i),(1 - 2i,-3,5+3i),(5i,5-3i,7):}|`, then `(i= sqrt(-1))`

A

z is purely real

B

z is purely imaginary

C

z + `bar(z)` = 0

D

`(z - bar(z) )` i is purely imaginary

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( z = \begin{vmatrix} 1 & 1 + 2i & -5i \\ 1 - 2i & -3 & 5 + 3i \\ 5i & 5 - 3i & 7 \end{vmatrix} \), we will follow these steps: ### Step 1: Write the Determinant We start by writing the determinant in a clearer format: \[ z = \begin{vmatrix} 1 & 1 + 2i & -5i \\ 1 - 2i & -3 & 5 + 3i \\ 5i & 5 - 3i & 7 \end{vmatrix} \] ### Step 2: Expand the Determinant We can expand this determinant using the first row: \[ z = 1 \cdot \begin{vmatrix} -3 & 5 + 3i \\ 5 - 3i & 7 \end{vmatrix} - (1 + 2i) \cdot \begin{vmatrix} 1 - 2i & 5 + 3i \\ 5i & 7 \end{vmatrix} - 5i \cdot \begin{vmatrix} 1 - 2i & -3 \\ 5i & 5 - 3i \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants Now, we calculate each of the 2x2 determinants: 1. For \( \begin{vmatrix} -3 & 5 + 3i \\ 5 - 3i & 7 \end{vmatrix} \): \[ = (-3)(7) - (5 + 3i)(5 - 3i) = -21 - (25 - 9) = -21 - 16 = -37 \] 2. For \( \begin{vmatrix} 1 - 2i & 5 + 3i \\ 5i & 7 \end{vmatrix} \): \[ = (1 - 2i)(7) - (5 + 3i)(5i) = 7 - 14i - (25i + 15) = 7 - 14i - 25i - 15 = -8 - 39i \] 3. For \( \begin{vmatrix} 1 - 2i & -3 \\ 5i & 5 - 3i \end{vmatrix} \): \[ = (1 - 2i)(5 - 3i) - (-3)(5i) = (5 - 3i - 10i + 6) + 15i = 11 - 8i + 15i = 11 + 7i \] ### Step 4: Substitute Back into the Determinant Now substituting back into the determinant expression: \[ z = 1 \cdot (-37) - (1 + 2i)(-8 - 39i) - 5i(11 + 7i) \] ### Step 5: Simplify Each Term 1. First term: \[ -37 \] 2. Second term: \[ -(-8 - 39i) - 2i(-8 - 39i) = 8 + 39i + 16i + 78 = 8 + 55i + 78 = 86 + 55i \] 3. Third term: \[ -5i(11 + 7i) = -55i - 35 = -35 - 55i \] ### Step 6: Combine All Terms Combining all the terms: \[ z = -37 + (86 - 35) + (55i - 55i) = -37 + 51 + 0i = 14 \] ### Final Result Thus, the value of \( z \) is: \[ z = 14 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}| , then z is

Let z = |(1,1-2i,3+5i),(1+2i,-5,10i),(3-5i,-10i,11)| , then

If z=|{:(3+2i,5-i,7-3i),(i,2i,-3i),(3-2i,5+i,7+3i):}|,"where "i=sqrt(-1),"then"

If z=|(1+i, 5+2i, 3-2i),(7i, -3i, 5i),(1-i, 5-2i, 3+2i)| then (A) z is purely real imaginary (B) z is purely real (C) z has equal real and imaginary parts (D) z has positive real and imaginary parts.

If (1-i)(1-2i)(1-3i)…..(1-ni)=x-iy , then 2.5.10 ……(1+n^2)=

Suppose x+iy=|(7i,-5i,1),(14,5i,-1),(28,5,i)| then sqrt((x+1//4)^(2)+y^(2))= __________

If z = (sqrt(5)+3i) , find z^(-1) .

If a,b,c, are real numbers,and a=det[[a,1+2i,3-5i1-2i,b,-7-3i3+5i,-7+3i,c]] then D is