Home
Class 12
MATHS
If one of the cube roots of 1 be omega, ...

If one of the cube roots of 1 be `omega`, then `|(1,1+omega^2,omega^2),(1-i,-1,omega^2-1),(-i,-1+omega,-1)|` (A) `omega` (B) `i ` (C) 1 (D) 0

A

`omega`

B

`i`

C

1

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If omega ne 1 is a cube root of unity, then 1, omega, omega^(2)

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is the complex cube root of unity then 1quad 1+i+omega^(2),omega^(2)1-i,-1-iquad -i+omega-1]|=

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)|= (A) -1 (B) i (C) omega (D) 0