Home
Class 12
MATHS
Let A = [{:(0, 2b , c),(a, b, -c),(a, -b...

Let A = `[{:(0, 2b , c),(a, b, -c),(a, -b, c):}]` be an orthogonal matrix, then the values of a, b, c, are related with

A

`b = pm (1)/(sqrt(6)) , c = pm (1)/(sqrt(3)) `

B

`a = pm (1)/(sqrt(2)) , c = pm (1)/(sqrt(3)) `

C

`a = pm (1)/(sqrt(2)) , b = pm (1)/(sqrt(6)) `

D

All of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the relationship between the values of \( a, b, c \) in the orthogonal matrix \( A = \begin{pmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{pmatrix} \), we need to use the property of orthogonal matrices. An orthogonal matrix \( A \) satisfies the condition: \[ A A^T = I \] where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix. ### Step 1: Find the transpose of matrix \( A \) The transpose of \( A \) is given by swapping rows with columns: \[ A^T = \begin{pmatrix} 0 & a & a \\ 2b & b & -b \\ c & -c & c \end{pmatrix} \] ### Step 2: Multiply \( A \) by \( A^T \) Now, we will calculate the product \( A A^T \): \[ A A^T = \begin{pmatrix} 0 & 2b & c \\ a & b & -c \\ a & -b & c \end{pmatrix} \begin{pmatrix} 0 & a & a \\ 2b & b & -b \\ c & -c & c \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row: - First element: \( 0 \cdot 0 + 2b \cdot 2b + c \cdot c = 4b^2 + c^2 \) - Second element: \( 0 \cdot a + 2b \cdot b + c \cdot (-c) = 2b^2 - c^2 \) - Third element: \( 0 \cdot a + 2b \cdot (-b) + c \cdot c = -2b^2 + c^2 \) - Second row: - First element: \( a \cdot 0 + b \cdot 2b + (-c) \cdot c = 2b^2 - c^2 \) - Second element: \( a \cdot a + b \cdot b + (-c) \cdot (-c) = a^2 + b^2 + c^2 \) - Third element: \( a \cdot a + b \cdot (-b) + (-c) \cdot c = a^2 - b^2 + c^2 \) - Third row: - First element: \( a \cdot 0 + (-b) \cdot 2b + c \cdot c = -2b^2 + c^2 \) - Second element: \( a \cdot a + (-b) \cdot b + c \cdot (-c) = a^2 - b^2 - c^2 \) - Third element: \( a \cdot a + (-b) \cdot (-b) + c \cdot c = a^2 + b^2 + c^2 \) So, we have: \[ A A^T = \begin{pmatrix} 4b^2 + c^2 & 2b^2 - c^2 & -2b^2 + c^2 \\ 2b^2 - c^2 & a^2 + b^2 + c^2 & a^2 - b^2 + c^2 \\ -2b^2 + c^2 & a^2 - b^2 - c^2 & a^2 + b^2 + c^2 \end{pmatrix} \] ### Step 3: Set \( A A^T \) equal to the identity matrix \( I \) The identity matrix \( I \) is: \[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] Equating the elements of \( A A^T \) with \( I \): 1. From the first row and first column: \[ 4b^2 + c^2 = 1 \tag{1} \] 2. From the first row and second column: \[ 2b^2 - c^2 = 0 \tag{2} \] 3. From the second row and second column: \[ a^2 + b^2 + c^2 = 1 \tag{3} \] 4. From the second row and third column: \[ a^2 - b^2 + c^2 = 0 \tag{4} \] ### Step 4: Solve the equations From equation (2): \[ c^2 = 2b^2 \tag{5} \] Substituting (5) into (1): \[ 4b^2 + 2b^2 = 1 \implies 6b^2 = 1 \implies b^2 = \frac{1}{6} \implies b = \pm \frac{1}{\sqrt{6}} \] Using (5) to find \( c \): \[ c^2 = 2b^2 = 2 \cdot \frac{1}{6} = \frac{1}{3} \implies c = \pm \frac{1}{\sqrt{3}} \] Now, substituting \( b^2 \) and \( c^2 \) into (3): \[ a^2 + \frac{1}{6} + \frac{1}{3} = 1 \implies a^2 + \frac{1}{6} + \frac{2}{6} = 1 \implies a^2 + \frac{3}{6} = 1 \implies a^2 = 1 - \frac{1}{2} = \frac{1}{2} \implies a = \pm \frac{1}{\sqrt{2}} \] ### Final Result The values of \( a, b, c \) are related as follows: - \( a = \pm \frac{1}{\sqrt{2}} \) - \( b = \pm \frac{1}{\sqrt{6}} \) - \( c = \pm \frac{1}{\sqrt{3}} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If [(0,2b,c),(a,b,-c),(a,-b,c)] is orthogonal matrix, then the value of |abc| is equal to (where |*| represents modulus function)

If A=[(0,2b,c),(a,b,-c),(a,-b,c)] , then find the value of a, b and c. Such that A^(T)A=I

If matrix [{:(0,a,3),(2,b,-1),(c,1,0):}] is skew-symmetric matrix, then find the values of a,b and c,

If the matrix P = [(7,a,4),(-1,3,b),(c, 6, 2)] is a symmetric matrix then the respective values of a ,b,c are

5.If a.b =b .c=c.a=0 then the value of [a,b,c] is

Let a = {a, b, c} and R = {(a, a), (b, b), (c, c), (b, c), (a, b)} be a relation on A, then the

Let A=[(a, b),(c, a)]AA a, b, c, in {0, 1, 2} . If A is a singular matrix, then the number of possible matrices A are

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value of a^(3) + b^(3)+c^(3) is

Let A={a,b,c} and R={(a,a),(b,b),(c,c),(b,c),(a,b)} be a relation on A, then R is :

If A is an orthogonal matrix then A^(-1) equals A^(T) b.A c.A^(2) d.none of these