Home
Class 12
MATHS
If maximum and minimum values of the det...

If maximum and minimum values of the determinant `|{:(1 + cos^(2)x , sin^(2) x, cos 2x),(cos^(2) x , 1 + sin^(2)x, cos 2x),(cos^(2) x , sin^(2) x , 1 + cos 2 x):}|` are `alpha and beta ` then

A

`alpha^(2) + beta^(101) = 10 `

B

`alpha^(3) - beta^(99) = 26 `

C

`2 alpha^(2) - 18 beta^(11) = 0`

D

`alpha^(3) + 2 beta^(2) = 0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ D = \begin{vmatrix} 1 + \cos^2 x & \sin^2 x & \cos 2x \\ \cos^2 x & 1 + \sin^2 x & \cos 2x \\ \cos^2 x & \sin^2 x & 1 + \cos 2x \end{vmatrix} \] we will perform a series of operations to simplify it. ### Step 1: Simplifying the First Column We will perform the operation \( C_1 \leftarrow C_1 + C_2 \): \[ D = \begin{vmatrix} (1 + \cos^2 x + \sin^2 x) & \sin^2 x & \cos 2x \\ (\cos^2 x + 1 + \sin^2 x) & (1 + \sin^2 x) & \cos 2x \\ (\cos^2 x + \sin^2 x) & \sin^2 x & (1 + \cos 2x) \end{vmatrix} \] Since \( \cos^2 x + \sin^2 x = 1 \), we can simplify: \[ D = \begin{vmatrix} 2 & \sin^2 x & \cos 2x \\ 2 & 1 + \sin^2 x & \cos 2x \\ 1 & \sin^2 x & 1 + \cos 2x \end{vmatrix} \] ### Step 2: Subtracting Rows Next, we perform the operation \( R_2 \leftarrow R_2 - R_1 \): \[ D = \begin{vmatrix} 2 & \sin^2 x & \cos 2x \\ 0 & \sin^2 x & 0 \\ 1 & \sin^2 x & 1 + \cos 2x \end{vmatrix} \] ### Step 3: Expanding the Determinant Now we can expand the determinant along the first row: \[ D = 2 \begin{vmatrix} \sin^2 x & \cos 2x \\ \sin^2 x & 1 + \cos 2x \end{vmatrix} \] Calculating the 2x2 determinant: \[ D = 2 \left( \sin^2 x (1 + \cos 2x) - \sin^2 x \cos 2x \right) \] This simplifies to: \[ D = 2 \sin^2 x \] ### Step 4: Finding Maximum and Minimum Values The maximum value of \( \sin^2 x \) is 1 and the minimum value is 0. Therefore: - Maximum value \( \alpha = 2 \cdot 1 = 2 \) - Minimum value \( \beta = 2 \cdot 0 = 0 \) ### Final Result Thus, the maximum and minimum values of the determinant are \( \alpha = 2 \) and \( \beta = 0 \).
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

If the maximum and minimum values of the determinant |(1+sin^(2)x,cos^(2)x,sin2x),(sin^(2)x,1+cos^(2)x,sin2x),(sin^(2)x,cos^(2)x,1+sin2x)| are alpha and beta respectively, then alpha+2beta is equal to

Solve: [[cos^(2)x, sin^(2)x],[sin^(2)x, cos^(2)x]]+[[sin^(2)x, cos^(2)x],[cos^(2)x, sin^(2)x]]

If maximum and minimum values of the determinant |{:(1+sin^2x,cos^2x,sin2x),(sin^2x,1+cos^2x,sin2x),(sin^2x,cos^2x,1+sin2x):}| are alpha and beta then show that (alpha^(2n)-beta^(2n)) is always an even integer for n in N .

sin ^ (2) x, cos x ^ (2) x, 1cos ^ (2) x, sin ^ (2) x, 1-10,12,2] | = 0

(sin x + cos x)^2 + (sin x - cos x)^2

int ((4-5sin x) / (cos ^ (2) x) + (1) / (sin ^ (2) x cos ^ (2) x)) dx

(cos^(3) x- sin^(2) x)/(cos x - sin x)=(1)/(2) (2 + sin 2x)

Compute the following: [[cos^2x, sin^2x],[sin^2 x, cos^2 x]]+[[sin^2x, cos^2 x],[cos^2 x, sin^2 x]]

If cos2x+2cos x=1 then sin^(2)x(2-cos^(2)x) is