Home
Class 12
MATHS
If A = [{:((b+c)^(2),a^(2), a^(2)),(b^(2...

If A = `[{:((b+c)^(2),a^(2), a^(2)),(b^(2) , (c+ a)^(2), b^(2)),(c^(2),c^(2) ,(a + b)^(2)):}|` , then det A is

A

2`(a + b + c)^(2)`

B

2abc `(a + b + c)^(2)`

C

2 abc `(a + b + c)^(3)`

D

abc `(a + b + c)^(2) `

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant of the matrix \( A \) given by: \[ A = \begin{pmatrix} (b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2 \\ c^2 & c^2 & (a+b)^2 \end{pmatrix} \] we will follow these steps: ### Step 1: Apply Column Operations We will perform column operations to simplify the determinant. Specifically, we will replace the second column \( C_2 \) with \( C_2 - C_1 \) and the third column \( C_3 \) with \( C_3 - C_1 \). \[ C_2 \rightarrow C_2 - C_1 \quad \text{and} \quad C_3 \rightarrow C_3 - C_1 \] This gives us the new matrix: \[ A' = \begin{pmatrix} (b+c)^2 & a^2 - (b+c)^2 & a^2 - (b+c)^2 \\ b^2 & (c+a)^2 - b^2 & b^2 - b^2 \\ c^2 & c^2 - c^2 & (a+b)^2 - c^2 \end{pmatrix} \] ### Step 2: Simplify the Entries Now we simplify the entries in the new matrix: 1. For \( a^2 - (b+c)^2 = a^2 - (b^2 + 2bc + c^2) = a^2 - b^2 - 2bc - c^2 \) 2. For \( (c+a)^2 - b^2 = c^2 + 2ac + a^2 - b^2 \) 3. The third column becomes \( (a+b)^2 - c^2 = a^2 + 2ab + b^2 - c^2 \) Thus, we have: \[ A' = \begin{pmatrix} (b+c)^2 & a^2 - b^2 - 2bc - c^2 & a^2 - b^2 - 2bc - c^2 \\ b^2 & c^2 + 2ac + a^2 - b^2 & 0 \\ c^2 & 0 & a^2 + 2ab + b^2 - c^2 \end{pmatrix} \] ### Step 3: Factor Out Common Terms Notice that the second and third columns are now similar. We can factor out common terms from the determinant. ### Step 4: Calculate the Determinant Now, we can calculate the determinant using the properties of determinants. Since we have two identical columns, the determinant will be zero. Thus, we have: \[ \text{det}(A) = 0 \] ### Conclusion The determinant of the matrix \( A \) is: \[ \text{det}(A) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

det[[(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]]=kabc(a+b+c)^(3)

prove that |{:((b+c)^(2),,bc,,ac),(ba,,(c+a)^(2),,cb),(ca,,cb,,(a+b)^(2)):}| |{:((b+c)^(2),,a^(2),,a^(2)),(b^(2),,(c+a)^(2),,b^(2)),(c^(2),,c^(2),,(a+b)^(2)):}| =2abc (a+b+c)^(3)

Prove that ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

Prove that: ,,(b+c)^(2),a^(2),a^(2)b^(2),(c+a)^(2),b^(2)c^(2),c^(2),(a+b)^(2)]|=2abc(a+b+c)^(3)

Prove that: |(b+c)^(2)a^(2)a^(2)b^(2)(c+a)^(2)b^(2)c^(2)c^(2)(a+b)^(2)|=2abc(a+b+c)^(3)

Det[[a^(2),bc,ac+c^(2)a^(2)+ab,b^(2),acab,b^(2),c^(2)]]=4a^(2)b^(2)c^(2)

det[[a^(2),bc,ac+c^(2)a^(2)+ab,b^(2),acab,b^(2)+bc,c^(2)]]=4a^(2)b^(2)c^(2)

Prove that |{:(a^(2), a^(2)-(b-c)^(2), bc), (b^(2), b^(2)-(c-a)^(2), ca), (c^(2), c^(2)-(a-b)^(2), ab):}|= (a^(2)+b^(2)+c^(2))(a-b)(b-c)(c-a)(a+b+c)

If det[[1,a^(2),a^(4)1,b^(2),b^(4)1,c^(2),c^(4)]]=kdet[[1,1,1a,b,ca^(2),b^(2),c^(2)]] then k is