Home
Class 12
MATHS
If A(alpha), = [{:(cos alpha , sin alpha...

If `A_(alpha), = [{:(cos alpha , sin alpha),(-sin alpha , cos alpha):}]` , then

A

`(A_(alpha))^(n) = [{:(-cos n alpha , cos n alpha),(-sin n alpha , sin n alpha):}]`

B

`A_(alpha) A_(beta) = A_(alpha + beta)`

C

`(A_(alpha))^(n) = [{:(-cos n alpha , sin n alpha),(-sin n alpha , cos n alpha):}]`

D

`A_(alpha) A_(beta) = - A_(alpha + beta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem involving the matrix \( A_\alpha = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \), we will find \( A_\alpha^n \) and the product \( A_\alpha A_\beta \). ### Step 1: Calculate \( A_\alpha^2 \) To find \( A_\alpha^2 \), we multiply \( A_\alpha \) by itself: \[ A_\alpha^2 = A_\alpha \cdot A_\alpha = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \] Calculating the elements: 1. First row, first column: \[ \cos \alpha \cdot \cos \alpha + \sin \alpha \cdot (-\sin \alpha) = \cos^2 \alpha - \sin^2 \alpha = \cos 2\alpha \] 2. First row, second column: \[ \cos \alpha \cdot \sin \alpha + \sin \alpha \cdot \cos \alpha = 2 \cos \alpha \sin \alpha = \sin 2\alpha \] 3. Second row, first column: \[ -\sin \alpha \cdot \cos \alpha + \cos \alpha \cdot (-\sin \alpha) = -2 \sin \alpha \cos \alpha = -\sin 2\alpha \] 4. Second row, second column: \[ -\sin \alpha \cdot \sin \alpha + \cos \alpha \cdot \cos \alpha = \cos^2 \alpha - \sin^2 \alpha = \cos 2\alpha \] Thus, we have: \[ A_\alpha^2 = \begin{pmatrix} \cos 2\alpha & \sin 2\alpha \\ -\sin 2\alpha & \cos 2\alpha \end{pmatrix} \] ### Step 2: Generalize \( A_\alpha^n \) From the pattern observed, we can generalize: \[ A_\alpha^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{pmatrix} \] ### Step 3: Calculate \( A_\alpha A_\beta \) Next, we calculate the product \( A_\alpha A_\beta \): \[ A_\alpha A_\beta = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \] Calculating the elements: 1. First row, first column: \[ \cos \alpha \cdot \cos \beta + \sin \alpha \cdot (-\sin \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos(\alpha + \beta) \] 2. First row, second column: \[ \cos \alpha \cdot \sin \beta + \sin \alpha \cdot \cos \beta = \cos \alpha \sin \beta + \sin \alpha \cos \beta = \sin(\alpha + \beta) \] 3. Second row, first column: \[ -\sin \alpha \cdot \cos \beta + \cos \alpha \cdot (-\sin \beta) = -\sin \alpha \cos \beta - \cos \alpha \sin \beta = -\sin(\alpha + \beta) \] 4. Second row, second column: \[ -\sin \alpha \cdot \sin \beta + \cos \alpha \cdot \cos \beta = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \cos(\alpha + \beta) \] Thus, we have: \[ A_\alpha A_\beta = \begin{pmatrix} \cos(\alpha + \beta) & \sin(\alpha + \beta) \\ -\sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix} \] ### Conclusion The results we derived are: 1. \( A_\alpha^n = \begin{pmatrix} \cos n\alpha & \sin n\alpha \\ -\sin n\alpha & \cos n\alpha \end{pmatrix} \) 2. \( A_\alpha A_\beta = A_{\alpha + \beta} \)
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|8 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2: SINGLE OPTION CORRECT TYPE)|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If A = [(cos alpha,sin alpha),(-sin alpha,cos alpha)] , then A^(10) = .........

If A = [ (cos alpha ,- sin alpha ),(sin alpha ,cos alpha)] , then A + A' = I then the value of alpha is :

If A_(alpha)=[[cos alpha,sin alpha-sin alpha,cos alpha]]. Prove that

A=[[cos alpha,sin alpha],[-sin alpha,cos alpha]] , then find | A |

Let A_(alpha)=[[cos alpha,-sin alpha,osin alpha,cos alpha,00,0,1]]

A_((alpha))=[{:(cos alpha,-sin alpha),(sin alpha,cos alpha):}],A_((beta))=[{:(cos beta,-sin beta),(sin beta,cos beta):}] Which one of the following is correct ?