Home
Class 12
MATHS
Let A be a square matrix. Then prove tha...

Let `A` be a square matrix. Then prove that `(i) A + A^T` is a symmetric matrix,`(ii) A -A^T` is a skew-symmetric matrix and`(iii) AA^T` and `A^TA` are symmetric matrices.

Text Solution

Verified by Experts

(i) Let `P=A+A^(T)`.
`:. P^(T)=(A+A^(T))^(T)`
`=A^(T)+(A^(T))^(T)" "[ :' (A+B)^(T)=A^(T)+B^(T)]`
`=A^(T)+A" "[ :' (A^(T))^(T)=A]`
`=A+A^(T)" "[ :' "matrix addition is commutative"]`
`=P`
Therefore, P is a symmetric matrix.
(ii) Let `Q=A-A^(T)`.
`:. Q^(T)=(A-A^(T))^(T)`
`=A^(T)-(A^(T))^(T)`
`=A^(T)-A`
`=-(A-A^(T))`
`=-Q`
therefore, Q is skew-symmetric
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.1|5 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise CAE 13.2|6 Videos
  • MATRICES

    CENGAGE ENGLISH|Exercise Single correct Answer|34 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos
  • METHODS OF DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Single Correct Answer Type|46 Videos

Similar Questions

Explore conceptually related problems

Let a be square matrix. Then prove that A A^(T) and A^(T) A are symmetric matrices.

Let A be a square matrix. Then which of the following is not a symmetric matrix -

If A is skew-symmetric matrix then A^(2) is a symmetric matrix.

It A is a symmetric matrix, write whether A^T is symmetric or skew - symmetric matrix.

If A and B are symmetric matrices, prove that AB BA is a skew symmetric matrix.

For, a 3xx3 skew-symmetric matrix A, show that adj A is a symmetric matrix.

If A is a symmetric matrix ,then prove that adj A is also symmetric

Prove that inverse of a skew-symmetric matrix (if it exists) is skew-symmetric.

The inverse of an invertible symmetric matrix is a symmetric matrix.

If A is a symmetric matrix, write whether A^T is symmetric or skew-symmetric.

CENGAGE ENGLISH-MATRICES-ILLUSTRATION
  1. If A=[(1,2),(3,4),(5,6)] and B=[(-3,-2),(1,-5),(4,3)], then find D=[(p...

    Text Solution

    |

  2. A=[(cos alpha,-sin alpha),(sin alpha,cos alpha)] and A+A^(T)=I, find t...

    Text Solution

    |

  3. Let A be a square matrix. Then prove that (i) A + A^T is a symmetric m...

    Text Solution

    |

  4. If A=[(2,-1),(3,1)] and B=[(1,4),(7,2)] , find 3A-2Bdot

    Text Solution

    |

  5. Find non-zero values of x satisfying the matrix equation: x[(2x,2),(3,...

    Text Solution

    |

  6. Let A+2B=[(1,2,0),(6,-3,3),(-5,3,1)] and 2A-B=[(2,-1,5),(2,-1,6),(0,1,...

    Text Solution

    |

  7. If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2)...

    Text Solution

    |

  8. Prove that every square matrix can be uniquely expressed as the sum of...

    Text Solution

    |

  9. Matrix A ha s m rows and n+ 5 columns; matrix B has m rows and 11 - n ...

    Text Solution

    |

  10. If A=[{:(2,3,-1),(1,4,2):}] and B=[{:(2,3),(4,5),(2,1):}] then AB and ...

    Text Solution

    |

  11. Find the value of x and y that satisfy the equations [(3,-2),(3,0),(2,...

    Text Solution

    |

  12. Find the values of x ,\ \ y\ ,\ z if the matrix A=[0 2y z x y-z x-y z]...

    Text Solution

    |

  13. If A=[costhetasintheta-sinthetacostheta], then prove that A^n=[cosnthe...

    Text Solution

    |

  14. If A=((p,q),(0,1)), then show that A^(8)=((p^(8),q((p^(8)-1)/(p-1))),(...

    Text Solution

    |

  15. Let A=[(2,1),(0,3)] be a matrix. If A^(10)=[(a,b),(c,d)] then prove th...

    Text Solution

    |

  16. Show that the solutions of the equation [(x,y),(z,t)]^2=0 are[(x,y),(...

    Text Solution

    |

  17. Let a be square matrix. Then prove that A A^(T) and A^(T) A are symmet...

    Text Solution

    |

  18. If A, B are square materices of same order and B is a skewsymmetric ma...

    Text Solution

    |

  19. If a and B are square matrices of same order such that AB+BA=O, then p...

    Text Solution

    |

  20. Let A=[(1,2),(-1,3)] .If A^6=kA-205I then then numerical quantity of...

    Text Solution

    |